Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Designing Authentic Undergraduate Research Experiences in a Single-Semester Lab Course.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Mennella, Thomas A.
- Source:
American Biology Teacher (University of California Press). Sep2015, Vol. 77 Issue 7, p526-531. 6p.
- Additional Information
- Subject Terms:
- Abstract:
The importance of a robust undergraduate research experience has been demonstrated time and again. However, too few undergraduates engage in genuine research and leverage this opportunity. Here, I present a laboratory course in cell and molecular biology that is designed to mimic a true research project. Students work through a 10-step experimental design culminating in the construction, expression, and visualization of microtubules fused to green fluorescent protein in baker's yeast. The steps of this project include the isolation of the tubulin gene from yeast genomic DNA, the cloning of that gene into an expression vector, the amplification of this plasmid in E. coli, and the expression of fluorescent tubulin in yeast. Controls and validation steps are embedded throughout the project, as they would be in a genuine research project. This laboratory course more closely resembles a one-semester undergraduate research experience than a typical lab course. However, because this course reaches a much larger number of students compared with undergraduate research opportunities, it provides students with a valuable research experience that remains confined to the scheduled time block of a typical lab course. In this way, many of the benefits of research are experienced by a large number of undergraduates. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of American Biology Teacher (University of California Press) is the property of University of California Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.