Comparison of measurements and computations of isothermal flow velocity inside HyperVapotrons.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      HyperVapotrons are two-phase water-cooled heat exchangers able to receive high heat fluxes (HHF) by employing a cyclic phenomenon called the “Vapotron Effect”. HyperVapotrons have been used routinely in HHF nuclear fusion applications. A detailed experimental investigation on the effect giving rise to the ability to sustain steady state heat fluxes in excess of 10 MW/m 2 has not yet been possible and hence the phenomenon is not yet well understood. The coolant flow structures that promote the effect have been a major point of interest, and many investigations based on computational fluid dynamic (CFD) simulations have been performed in the past. The understanding of the physics of the coolant flow inside the device may hold the key to further optimisation of engineering designs. However, past computational investigations have not been experimentally evaluated. Isothermal flow velocity distribution measurements of the fluid flow in HyperVapotron optical models with high spatial resolution are performed in this paper. The same measurements are subsequently calculated via commercial CFD software. The isothermal CFD calculation is compared to the experimental velocity measurements to deduce the accuracy of the CFD investigations carried out. This unique comparison between computational and experimental results in HyperVapotrons will direct future efforts in analysing similar devices. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Fusion Engineering & Design is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)