Cell type-specific manipulation with GFP-dependent Cre recombinase.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      There are many transgenic GFP reporter lines that allow the visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. We developed a method that exploits GFP for gene manipulation, Cre recombinase dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, which led to effective recombination selectively in GFP-labeled cells. Furthermore, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we found that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Nature Neuroscience is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)