Markers of Inflammation and Coagulation after Long-Term Exposure to Coarse Particulate Matter: A Cross-Sectional Analysis from the Multi-Ethnic Study of Atherosclerosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Background: Toxicological research suggests that coarse particles (PM10-2.5) are inflammatory, but responses are complex and may be best summarized by multiple inflammatory markers. Few human studies have investigated associations with PM10-2.5 and, of those, none have explored longterm exposures. Here we examine long-term associations with inflammation and coagulation in the Multi-Ethnic Study of Atherosclerosis. Methods: Participants included 3,295 adults (45-84 years of age) from three metropolitan areas. Site-specific spatial models were used to estimate 5-year concentrations of PM10-2.5 mass and copper, zinc, phosphorus, silicon, and endotoxin found in PM10-2.5. Outcomes included interleukin-6, C-reactive protein, fibrinogen, total homocysteine, D-dimer, factor VIII, plasmin- antiplasmin complex, and inflammation and coagulation scores. We used multivariable regression with multiply imputed data to estimate associations while controlling for potential confounders, including co-pollutants such as fine particulate matter. Results: Some limited evidence was found of relationships between inflammation and coagulation and PM10-2.5. Endotoxin was the PM10-2.5 component most strongly associated with inflammation, with an interquartile range (IQR) increase (0.08 EU/m3) associated with 0.15 (95% CI: 0.01, 0.28; p = 0.03) and 0.08 (95% CI: -0.07, 0.23; p = 0.28) higher inflammation scores before and after control for city, respectively. Copper was the component with the strongest association with coagulation, with a 4-ng/m3 increase associated with 0.19 (95% CI: 0.08, 0.30; p = 0.0008) and 0.12 (95% CI: -0.05, 0.30; p = 0.16) unit higher coagulation scores before and after city adjustment, respectively. Conclusions: Our cross-sectional analysis provided some evidence that long-term PM10-2.5 exposure was associated with inflammation and coagulation, but associations were modest and depended on particle composition. Citation: Adar SD, D'Souza J, Mendelsohn-Victor K, Jacobs DR Jr, Cushman M, Sheppard L, Thorne PS, Burke GL, Daviglus ML, Szpiro AA, Diez Roux AV, Kaufman JD, Larson TV. 2015. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Environmental Health Perspectives is the property of National Institute of Environmental Health Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)