Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Epigenetic Regulation of miR-29s Affects the Lactation Activity of Dairy Cow Mammary Epithelial Cells.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Bian, Yanjie; Lei, Yu; Wang, Chunmei; Wang, Jie; Wang, Lina; Liu, Lili; Liu, Lixin; Gao, Xuejun; Li, Qingzhang
- Source:
Journal of Cellular Physiology; Sep2015, Vol. 230 Issue 9, p2152-2163, 12p
- Subject Terms:
- Additional Information
- Abstract:
Milk is important for human nutrition, and enhanced milk quality has become a major selection criterion for the genetic improvement of livestock. Epigenetic modifications have been shown to be involved in mammary gland development; but the mechanisms underlying their effects remain unknown. MicroRNAs are involved in the regulation of milk synthesis and in mammary gland development. Our study is the first to investigate the roles of miR-29s and epigenetic regulation in dairy cow mammary epithelial cells (DCMECs). Our results show that miR-29s regulate the DNA methylation level by inversely targeting both DNMT3A and DNMT3B in DCMECs. The inhibition of miR-29s caused global DNA hypermethylation and increased the methylation levels of the promoters of important lactation-related genes, including casein alpha s1 (CSN1S1), E74-like factor 5 (ElF5), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element binding protein-1 (SREBP1), and glucose transporter 1 (GLUT1). The inhibition of miR-29s reduced the secretion of lactoprotein, triglycerides (TG) and lactose by DCMECs. Moreover, the treatment of DCMECs with 5-aza-2′-deoxycytidine (5-Aza-dC) decreased the methylation levels of the miR-29b promoter and increased the expression of miR-29b. The link between miR-29s and DNMT3A/3B enhances our understanding of the roles of miRNAs in mammary gland function, and our data will inform more experimentally oriented studies to identify new mechanisms of regulating lactation. We present new insights regarding the epigenetic regulation of lactation performance. Improved understanding of the molecular basis of lactation will aid in the development of strategies for optimizing milk quality in dairy cows and modifying the lactation performance of offspring. J. Cell. Physiol. 230: 2152-2163, 2015. © 2015 Wiley Periodicals, Inc. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Journal of Cellular Physiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.