Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Paracoccidioides brasiliensis Interferes on Dendritic Cells Maturation by Inhibiting PGE2 Production.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Fernandes, Reginaldo K.; Bachiega, Tatiana F.; Rodrigues, Daniela R.; Golim, Marjorie de A.; Dias-Melicio, Luciane A.; Balderramas, Helanderson de A.; Kaneno, Ramon; Soares, Ângela M. V. C.
- Source:
PLoS ONE; Mar2015, Vol. 10 Issue 3, p1-17, 17p
- Subject Terms:
- Additional Information
- Subject Terms:
- Abstract:
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil, whose etiologic agent is the thermodimorphic fungus of the genus Paracoccidioides, comprising cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii. The mechanisms involved in the initial interaction of the fungus with cells of the innate immune response, as dendritic cells (DCs), deserve to be studied. Prostaglandins (PGs) are eicosanoids that play an important role in modulating functions of immune cells including DCs. Here we found that human immature DCs derived from the differentiation of monocytes cultured with GM-CSF and IL-4 release substantial concentrations of PGE2, which, however, were significantly inhibited after challenge with P. brasiliensis. In vitro blocking of pattern recognition receptors (PRRs) by monoclonal antibodies showed the involvement of mannose receptor (MR) in PGE2 inhibition by the fungus. In addition, phenotyping assays showed that after challenge with the fungus, DCs do not change their phenotype of immature cells to mature ones, as well as do not produce IL-12 p70 or adequate concentrations of TNF-α. Assays using exogenous PGE2 confirmed an association between PGE2 inhibition and failure of cells to phenotypically mature in response to P. brasiliensis. We conclude that a P. brasiliensis evasion mechanism exists associated to a dysregulation on DC maturation. These findings may provide novel information for the understanding of the complex interplay between the host and this fungus. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.