Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Description of Cohnella rhizoplanae sp. nov., isolated from the root surface of soybean (Glycine max).
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Kämpfer P;Kämpfer P; Glaeser SP; Glaeser SP; McInroy JA; McInroy JA; Busse HJ; Busse HJ; Clermont D; Clermont D; Criscuolo A; Criscuolo A
- Source:
Antonie van Leeuwenhoek [Antonie Van Leeuwenhoek] 2024 Dec 24; Vol. 118 (2), pp. 41. Date of Electronic Publication: 2024 Dec 24.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Netherlands NLM ID: 0372625 Publication Model: Electronic Cited Medium: Internet ISSN: 1572-9699 (Electronic) Linking ISSN: 00036072 NLM ISO Abbreviation: Antonie Van Leeuwenhoek Subsets: MEDLINE
- Publication Information: Publication: 2004- : Berlin : Springer
Original Publication: Wageningen, Netherland [etc.] Veenman [etc.] - Subject Terms:
- Abstract: A Gram-staining-positive, aerobic bacterium, designated strain JJ-181 T , was isolated from the root surface of soybean. Based on the 16S rRNA gene sequence similarities, strain JJ-181 T was grouped into the genus Cohnella, most closely related to Cohnella hashimotonis F6_2S_P_1 T (98.85%) and C. ginsengisoli GR21-5 T (98.3%). The pairwise average nucleotide identity and digital DNA-DNA hybridisation values of the JJ-181 T genome assembly against publicly available Cohnella type strain genomes were below 84% and 28%, respectively. The fatty acid profile from whole cell hydrolysates, the cell wall diaminoacid, the quinone system, the polar lipid profile, and the polyamine pattern supported the allocation of strain JJ-181 T to the genus Cohnella. In addition, the results of physiological and biochemical tests also allowed phenotypic differentiation of strain JJ-181 T from its closely-related Cohnella species. Functional analysis revealed that strain JJ-181 T has different gene clusters related to swarming motility, chemotaxis ability, and endospore and biofilm formations. The gene content also suggests the ability of strain JJ-181 T to synthesise biotin and riboflavin, as well as indole-3-acetic acid, an important phytohormone for plant growth. Based on polyphasic analyses, strain JJ-181 T can be classified as a new species of the genus Cohnella, for which we propose the name Cohnella rhizoplanae sp. nov., with strain JJ-181 T (= LMG 31678 T = CIP 112018 T = CCM 9031 T = DSM 110650 T ) as the type strain.
Competing Interests: Declarations. Competing interests: The authors declare no competing interests. Ethics approval: This article does not contain any studies with human participants or animals performed by any of the authors.
(© 2024. The Author(s).) - References: Altenburger P, Kämpfer P, Makristathis A et al (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52. https://doi.org/10.1016/0168-1656(96)01376-4. (PMID: 10.1016/0168-1656(96)01376-4)
Blin K, Shaw S, Augustijn HE et al (2023) antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51:W46–W50. https://doi.org/10.1093/nar/gkad344. (PMID: 10.1093/nar/gkad3443714003610320115)
Brosius J, Palmer ML, Kennedy PJ et al (1978) Complete nucleotide-sequence of a 16S ribosomal-RNA gene from Escherichia coli. PNAS 75:4801–4805. https://doi.org/10.1073/pnas.75.10.4801. (PMID: 10.1073/pnas.75.10.4801368799336208)
Busse HJ, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8. https://doi.org/10.1016/S0723-2020(88)80040-7. (PMID: 10.1016/S0723-2020(88)80040-7)
Busse HJ, Bunka S, Hensel A et al (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708. https://doi.org/10.1099/00207713-47-3-698. (PMID: 10.1099/00207713-47-3-698)
Cai F, Wang Y, Qi H et al (2010) Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 60:1605–1608. https://doi.org/10.1099/ijs.0.016790-0. (PMID: 10.1099/ijs.0.016790-019700453)
Criscuolo A (2019) A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Ideas Outcome 5:e36178. https://doi.org/10.3897/rio.5.e36178. (PMID: 10.3897/rio.5.e36178)
Criscuolo A (2020) On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000 Res 9:1309. https://doi.org/10.12688/f1000research.26930.1. (PMID: 10.12688/f1000research.26930.1)
Criscuolo A, Gribaldo S (2010) BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210. https://doi.org/10.1186/1471-2148-10-210. (PMID: 10.1186/1471-2148-10-210206268973017758)
Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y. (PMID: 10.1186/s13059-019-1832-y317271286857279)
Flores-Félix JD, Carro L, Ramírez-Bahena MH et al (2014) Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 64:83–87. https://doi.org/10.1099/ijs.0.050849-0. (PMID: 10.1099/ijs.0.050849-024021729)
Galperin MY, Wolf YI, Makarova KS et al (2021) COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acid Res 49:D274–D281. https://doi.org/10.1093/nar/gkaa1018. (PMID: 10.1093/nar/gkaa101833167031)
García-Fraile P, Velázquez E, Mateos PF et al (2008) Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 58:1855–1859. https://doi.org/10.1099/ijs.0.65468-0. (PMID: 10.1099/ijs.0.65468-018676468)
Gerhardt P, Murray RGE, Wood WA et al (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington.
Hamana K, Akiba T, Uchino F et al (1989) Distribution of spermine in bacilli and lactic bacteria. Can J Microbiol 35:450–455. https://doi.org/10.1139/m89-069. (PMID: 10.1139/m89-0692743218)
Hameed A, Hung MH, Lin SY et al (2013) Cohnella formosensis sp. nov., a xylanolytic bacterium isolated from the rhizosphere of Medicago sativa L. Int J Syst Evol Microbiol 63:2806–2812. https://doi.org/10.1099/ijs.0.045831-0. (PMID: 10.1099/ijs.0.045831-023315409)
He X, Li Q, Wang N, Chen S (2021) Effects of an EPS biosynthesis gene cluster of Paenibacillus polymyxa WLY78 on biofilm formation and nitrogen fixation under aerobic conditions. Microorganisms 9:289. https://doi.org/10.3390/microorganisms9020289. (PMID: 10.3390/microorganisms9020289335733307911366)
Hegemann J, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Accounts Chem Res 48:1909–1919. https://doi.org/10.1021/acs.accounts.5b00156. (PMID: 10.1021/acs.accounts.5b00156)
Jiang F, Dai J, Wang Y et al (2012) Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 62:817–821. https://doi.org/10.1099/ijs.0.030247-0. (PMID: 10.1099/ijs.0.030247-021571931)
Jukes TH, Cantor CR (1969) Evolution of the protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132. (PMID: 10.1016/B978-1-4832-3211-9.50009-7)
Kämpfer P (1990) Evaluation of the Titertek-Enterobac-automated system (TTE-AS) for identification of Enterobacteriaceae. Zentbl Bakteriol 273:164–172. https://doi.org/10.1016/s0934-8840(11)80244-6. (PMID: 10.1016/s0934-8840(11)80244-6)
Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005. https://doi.org/10.1139/m96-128. (PMID: 10.1139/m96-128)
Kämpfer P, Steiof M, Dott W (1991) Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–243. https://doi.org/10.1007/BF02539156. (PMID: 10.1007/BF0253915624194213)
Kämpfer P, Rosselló-Mora R, Falsen E et al (2006) Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786. https://doi.org/10.1099/ijs.0.63985-0. (PMID: 10.1099/ijs.0.63985-016585694)
Kämpfer P, Busse HJ, McInroy JA et al (2017) Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 67:4956–4961. https://doi.org/10.1099/ijsem.0.002357. (PMID: 10.1099/ijsem.0.00235729056111)
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010. (PMID: 10.1093/molbev/mst010233296903603318)
Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32:1933–1942. https://doi.org/10.1093/bioinformatics/btw108. (PMID: 10.1093/bioinformatics/btw108271536884920119)
Khianngam S, Tanasupawat S, Akaracharanya A et al (2010a) Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 60:2913–2917. https://doi.org/10.1099/ijs.0.017855-0. (PMID: 10.1099/ijs.0.017855-020097800)
Khianngam S, Tanasupawat S, Akaracharanya A et al (2010b) Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 60:2284–2287. https://doi.org/10.1099/ijs.0.015859-0. (PMID: 10.1099/ijs.0.015859-019915111)
Kim SA, Weon HY, Kim YS et al (2010) Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 60:526–530. https://doi.org/10.1099/ijs.0.013581-0. (PMID: 10.1099/ijs.0.013581-019654349)
Kim SJ, Weon HY, Kim YS et al (2011) Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. isolated from soil samples in Korea. J Microbiol 49:1033–1038. https://doi.org/10.1007/s12275-011-1071-8. (PMID: 10.1007/s12275-011-1071-822203570)
Knights HE, Jorrin B, Haskett TS, Poole PS (2021) Deciphering bacterial mechanisms of root colonization. Environ Microbiol Rep 13:428–444. https://doi.org/10.1111/1758-2229.12934. (PMID: 10.1111/1758-2229.1293433538402)
Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175.
Li W, O’Neill KR, Haft DH et al (2021) RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. https://doi.org/10.1093/nar/gkaa1105. (PMID: 10.1093/nar/gkaa110533270901)
Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371. https://doi.org/10.1093/nar/gkh293. (PMID: 10.1093/nar/gkh29314985472390282)
Ludwig W, Viver T, Westram R et al (2021) Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 44:126218. https://doi.org/10.1016/j.syapm.2021.126218. (PMID: 10.1016/j.syapm.2021.12621834111737)
Ma D, Du G, Fang H et al (2024) Advances and prospects in microbial production of biotin. Microb Cell Factor 23:135. (PMID: 10.1186/s12934-024-02413-1)
Minh BQ, Schmidt HA, Chernomor O et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015. (PMID: 10.1093/molbev/msaa015320117007182206)
Palacios OA, Bashan Y, de-Bashan LE, (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50:415–432. https://doi.org/10.1007/s00374-013-0894-3. (PMID: 10.1007/s00374-013-0894-3)
Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114. (PMID: 10.1101/gr.186072.114259774774484387)
Parks DH, Rinke C, Chuvochina M et al (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542. https://doi.org/10.1038/s41564-017-0012-7. (PMID: 10.1038/s41564-017-0012-728894102)
Rao PG (1973) Influence of riboflavin on growth, respiration, and chlorophyll and protein contents in green gram (Phaseolus radiatus Linn.). Curr Sci 42:580–581. https://doi.org/10.3389/fpls.2015.00700. (PMID: 10.3389/fpls.2015.00700)
Schauss T, Busse HJ, Golke J et al (2015) Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 65:3746–3753. https://doi.org/10.1099/ijsem.0.000486. (PMID: 10.1099/ijsem.0.00048626228269)
Schumann P (2011) Peptidoglycan structure. In: Rainey F, Oren A (eds) Taxonomy of prokaryotes methods in microbiology. Academic Press, London, pp 101–129. (PMID: 10.1016/B978-0-12-387730-7.00005-X)
Shameer S, Prasad TNVKV (2018) Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615. https://doi.org/10.1007/s10725-017-0365-1. (PMID: 10.1007/s10725-017-0365-1)
Simpson AC, Eedara VVR, Singh NK et al (2023) Comparative genomic analysis of Cohnella hashimotonis sp. nov. isolated from the International space station. Front Microbiol 14:1166013. https://doi.org/10.3389/fmicb.2023.1166013. (PMID: 10.3389/fmicb.2023.11660133739635810308117)
Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654.
Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x. (PMID: 10.1111/j.1574-6976.2007.00072.x17509086)
Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446. (PMID: 10.1093/bioinformatics/btl44616928733)
Stolz A, Busse HJ, Kämpfer P (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576. https://doi.org/10.1099/ijs.0.64761-0. (PMID: 10.1099/ijs.0.64761-017329787)
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120. (PMID: 10.1093/molbev/msab120338924918233496)
Tindall BJ (1990a) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X. (PMID: 10.1016/S0723-2020(11)80158-X)
Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. https://doi.org/10.1111/j.1574-6968.1990.tb03996.x. (PMID: 10.1111/j.1574-6968.1990.tb03996.x)
Uksa M, Buegger F, Gschwendtner S et al (2017) Bacteria utilizing plant-derived carbon in the rhizosphere of Triticum aestivum change in different depths of an arable soil. Environ Microbiol Rep 9:729–741. https://doi.org/10.1111/1758-2229.12588. (PMID: 10.1111/1758-2229.1258828892269)
Wang LY, Chen SF, Wang L et al (2012) Cohnella plantaginis sp. nov., a novel nitrogen-fixing species isolated from plantain rhizosphere soil. Ant Leeuwenhoek 102:83–89. https://doi.org/10.1007/s10482-012-9715-1. (PMID: 10.1007/s10482-012-9715-1)
Xie J, Shi H, Du Z et al (2016) Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6:21329. https://doi.org/10.1038/srep21329. (PMID: 10.1038/srep21329268564134746698)
Yarza P, Richter M, Peplies J et al (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250. https://doi.org/10.1016/j.syapm.2008.07.001. (PMID: 10.1016/j.syapm.2008.07.00118692976)
Yoon JH, Jung YT (2012) Cohnella boryungensis sp. nov., isolated from soil. Antonie Van Leeuwenhoek 101:769–775. https://doi.org/10.1007/s10482-011-9691-x. (PMID: 10.1007/s10482-011-9691-x22200782)
Yoon MH, Ten LN, Im WT (2007) Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 17:913–918. (PMID: 18050908)
Yuan L, Jiang H, Jiang X et al (2022) Comparative genomic and functional analyses of Paenibacillus peoriae ZBSF16 with biocontrol potential against grapevine diseases, provide insights into its genes related to plant growth-promoting and biocontrol mechanisms. Front Microbiol 13:975344. https://doi.org/10.3389/fmicb.2022.975344. (PMID: 10.3389/fmicb.2022.975344361601879492885)
Zhu S, Hegemann JD, Fage CD et al (2016) Insights into the unique phosphorylation of the lasso peptide Paeninodin. J Biol Chem 291:13662–13678. https://doi.org/10.1074/jbc.m116.722108. (PMID: 10.1074/jbc.m116.722108271512144919450) - Contributed Indexing: Keywords: Cohnella; Genomics; Phylogenetics; Taxonomy
- Accession Number: 0 (RNA, Ribosomal, 16S)
0 (DNA, Bacterial)
0 (Fatty Acids) - Publication Date: Date Created: 20241224 Date Completed: 20241224 Latest Revision: 20241224
- Publication Date: 20241224
- Accession Number: 10.1007/s10482-024-02051-y
- Accession Number: 39718652
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.