Molecular mechanisms of plant productivity enhancement by nano fertilizers for sustainable agriculture.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Dey A;Dey A; Sadhukhan A; Sadhukhan A
  • Source:
    Plant molecular biology [Plant Mol Biol] 2024 Nov 26; Vol. 114 (6), pp. 128. Date of Electronic Publication: 2024 Nov 26.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 9106343 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-5028 (Electronic) Linking ISSN: 01674412 NLM ISO Abbreviation: Plant Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Dordrecht : Kluwer Academic
      Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
    • Subject Terms:
    • Abstract:
      Essential plant nutrients encapsulated or combined with nano-dimensional adsorbents define nano fertilizers (NFs). Nanoformulation of non-essential elements enhancing plant growth and stress tolerance also comes under the umbrella of NFs. NFs have an edge over conventional chemical fertilizers, viz., higher plant biomass and yield using much lesser fertilization, thereby reducing environmental pollution. Foliar and root applications of NFs lead to their successful uptake by the plant, depending on the size, surface charge, and other physicochemical properties of NFs. Smaller NFs can pass through channels on the waxy cuticle depending on the hydrophobicity, while larger NFs pass through the stomatal conduits of leaves. Charge-based adsorption, followed by apoplastic movement and endocytosis, translocates NFs through the root, while the size of NFs influences passage into vascular tissues. Recent transcriptomic, proteomic, and metabolomic studies throw light on the molecular mechanisms of growth promotion by NFs. The expression levels of nutrient transporter genes are regulated by NFs, controlling uptake and minimizing excess nutrient toxicity. Accelerated growth by NFs is brought about by their extensive regulation of cell division, photosynthesis, carbohydrate, and nitrogen metabolism, as well as the phytohormone-dependent signaling pathways related to development, stress response, and plant defense. NFs mimic Ca, 2+ eliciting second messengers and associated proteins in signaling cascades, reaching transcription factors and finally orchestrating gene expression to enhance growth and stress tolerance. Developing advanced nano fertilizers of the future must involve exploring molecular interactions with plants to reduce toxicity and improve effectiveness.
      Competing Interests: Declarations. Conflict of interest: The authors declare that they do not have any competing or financial interests that have appeared to influence this review.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Abd El-Mageed TA, Shaaban A, Abd El-Mageed SA et al (2020) Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water. SILICON 13:2165–2176. https://doi.org/10.1007/s12633-020-00690-0. (PMID: 10.1007/s12633-020-00690-0)
      Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14:e0902. https://doi.org/10.5424/sjar/2016141-8205. (PMID: 10.5424/sjar/2016141-8205)
      Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289. https://doi.org/10.1016/j.ecoleng.2016.11.060. (PMID: 10.1016/j.ecoleng.2016.11.060)
      Abdelmigid HM, Morsi MM, Hussien NA et al (2022) Green synthesis of phosphorous-containing hydroxyapatite nanoparticles (nHAP) as a novel nano-fertilizer: preliminary assessment on pomegranate (Punica granatum L.). Nanomaterials 12:1527. https://doi.org/10.3390/nano12091527. (PMID: 10.3390/nano12091527355642359101472)
      Abideen Z, Hanif M, Munir N, Nielsen BL (2022) Impact of nanomaterials on the regulation of gene expression and metabolomics of plants under salt stress. Plants 11:691. https://doi.org/10.3390/plants11050691. (PMID: 10.3390/plants11050691352701618912827)
      Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Subba Rao A (2015) Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J Plant Nutr 38:1505–1515. https://doi.org/10.1080/01904167.2014.992536. (PMID: 10.1080/01904167.2014.992536)
      Akdemir H (2021) Metal nanoparticles-mediated changes on gene expressions and physiological parameters of Capsicum annuum L Experimed 11:88–95. https://doi.org/10.26650/experimed.2021.949102.
      Ali EF, El-Shehawi AM, Ibrahim OHM et al (2021a) A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol Biochem 161:166–175. https://doi.org/10.1016/j.plaphy.2021.02.008. (PMID: 10.1016/j.plaphy.2021.02.00833610861)
      Ali S, Mehmood A, Khan N (2021b) Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater 2021:1–17. https://doi.org/10.1016/j.tplants.2009.05.002. (PMID: 10.1016/j.tplants.2009.05.002)
      Ali SS, Darwesh OM, Kornaros M et al (2021c) Nano-biofertilizers: synthesis, advantages, and applications. Biofertilizers. https://doi.org/10.1016/b978-0-12-821667-5.00007-5. (PMID: 10.1016/b978-0-12-821667-5.00007-5)
      Angelini J, Klassen R, Široká J et al (2022) Silver nanoparticles alter microtubule arrangement, dynamics and stress phytohormone levels. Plants 11:313. https://doi.org/10.1016/j.stress.2022.100107. (PMID: 10.1016/j.stress.2022.100107351612948838976)
      Ansari MA (2023) Nanotechnology in food and plant science: challenges and future prospects. Plants 12:2565. https://doi.org/10.3390/plants12132565. (PMID: 10.3390/plants121325653744712610346217)
      Avellan A, Schwab F, Masion A et al (2017) Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol 51:8682–8691. https://doi.org/10.1021/acs.est.7b01133. (PMID: 10.1021/acs.est.7b0113328686423)
      Avellan A, Yun J, Zhang Y et al (2019) Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13:5291–5305. https://doi.org/10.1021/acsnano.8b09781. (PMID: 10.1021/acsnano.8b0978131074967)
      Avila-Quezada GD, Ingle AP, Golińska P, Rai M (2022) Strategic applications of nano-fertilizers for sustainable agriculture: benefits and bottlenecks. Nanotechnol Rev 11:2123–2140. https://doi.org/10.1515/ntrev-2022-0126. (PMID: 10.1515/ntrev-2022-0126)
      Azhar BJ, Noor A, Zulfiqar A et al (2020a) Effect of ZnO, SiO2 and composite nanoparticles on Arabidopsis thaliana and involvement of ethylene and cytokinin signaling pathways. Pak J Bot. https://doi.org/10.30848/PJB2021-2(40). (PMID: 10.30848/PJB2021-2(40))
      Banerjee A, Roychoudhury A (2022) Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere 286:131827. https://doi.org/10.1016/j.chemosphere.2021.131827. (PMID: 10.1016/j.chemosphere.2021.13182734403897)
      Banerjee K, Pramanik P, Maity A et al (2019) Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers). Adv Phytonanotechnol. https://doi.org/10.1016/B978-0-12-815322-2.00005-5. (PMID: 10.1016/B978-0-12-815322-2.00005-5)
      Basavegowda N, Baek KH (2021) Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. Biotech. https://doi.org/10.1007/s13205-021-02907-4. (PMID: 10.1007/s13205-021-02907-4)
      Becaro AA, Siqueira MC, Puti FC et al (2017) Cytotoxic and genotoxic effects of silver nanoparticle/carboxymethyl cellulose on Allium cepa. Environ Monit Assess. https://doi.org/10.1007/s10661-017-6062-8. (PMID: 10.1007/s10661-017-6062-828646437)
      Boks NP, Busscher HJ, van der Mei HC, Norde W (2008) Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic force microscopy. Langmuir 24:12990–12994. https://doi.org/10.1021/la801824c. (PMID: 10.1021/la801824c18942800)
      Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40. https://doi.org/10.1016/j.tplants.2012.08.008. (PMID: 10.1016/j.tplants.2012.08.00822974587)
      Boutchuen A, Zimmerman D, Aich N et al (2019) Increased plant growth with hematite nanoparticle fertilizer drop and determining nanoparticle uptake in plants using multimodal approach. J Nanomater 2019:1–11. https://doi.org/10.1155/2019/6890572. (PMID: 10.1155/2019/6890572)
      Bussières P (2014) Estimating the number and size of phloem sieve plate pores using longitudinal views and geometric reconstruction. Sci Rep. https://doi.org/10.1038/srep04929. (PMID: 10.1038/srep04929248162915381363)
      Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. https://doi.org/10.1116/1.2815690. (PMID: 10.1116/1.281569020419892)
      Cai L, Cai L, Jia H et al (2020) Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J Hazard Mater 393:122415. https://doi.org/10.1016/j.jhazmat.2020.122415. (PMID: 10.1016/j.jhazmat.2020.12241532143161)
      Chaffey N, Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2003) Molecular biology of the cell 4 th edn. Ann Bot 91:401. https://doi.org/10.1093/aob/mcg023. (PMID: 10.1093/aob/mcg0234244961)
      Chandra S, Chakraborty N, Dasgupta A et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep. https://doi.org/10.1038/srep15195. (PMID: 10.1038/srep15195265412684635374)
      Chavez Soria NG, Bisson MA, Atilla-Gokcumen GE, Aga DS (2019) High-resolution mass spectrometry-based metabolomics reveal the disruption of jasmonic pathway in Arabidopsis thaliana upon copper oxide nanoparticle exposure. Sci Total Environ 693:133443. https://doi.org/10.1016/j.scitotenv.2019.07.249. (PMID: 10.1016/j.scitotenv.2019.07.24931362232)
      Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617. https://doi.org/10.1002/smll.200901911. (PMID: 10.1002/smll.20090191120209658)
      Chen J, Liu X, Wang C et al (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182. https://doi.org/10.1016/j.jhazmat.2015.04.077. (PMID: 10.1016/j.jhazmat.2015.04.07725958266)
      Chhipa H (2016) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22. https://doi.org/10.1007/s10311-016-0600-4. (PMID: 10.1007/s10311-016-0600-4)
      Cornu JY, Bussière S, Coriou C, Robert T, Maucourt M, Deborde C, Moing A, Nguyen C (2020) Changes in plant growth, Cd partitioning and xylem sap composition in two sunflower cultivars exposed to low Cd concentrations in hydroponics. Ecotoxicol Environ Saf 205:111145. https://doi.org/10.1002/smll.200901911. (PMID: 10.1002/smll.20090191132846296)
      Corpas FJ, Barroso JB, Carreras A et al (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733. https://doi.org/10.1104/pp.104.042812. (PMID: 10.1104/pp.104.04281215347796523336)
      Cota-Ruiz K, Ye Y, Valdes C, Deng C, Wang Y, Hernández-Viezcas JA, Duarte-Gardea M, Gardea-Torresdey JL (2020) Copper nanowires as nanofertilizers for alfalfa plants: understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Sci Total Environ 742:140572. https://doi.org/10.1016/j.scitotenv.2020.140572. (PMID: 10.1016/j.scitotenv.2020.14057232623177)
      Croser C, Bengough AG, Pritchard J (2000) The effect of mechanical impedance on root growth in pea (Pisum sativum). II. Cell expansion and wall rheology during recovery. Physiol Plant 109:150–159. https://doi.org/10.1034/j.1399-3054.2000.100207.x. (PMID: 10.1034/j.1399-3054.2000.100207.x)
      da Cruz TNM, Savassa SM, Montanha GS et al (2019) A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Sci Rep. https://doi.org/10.1038/s41598-019-46796-3. (PMID: 10.1038/s41598-019-46796-3318891266937329)
      Davarpanah S, Tehranifar A, Davarynejad G et al (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64. https://doi.org/10.1016/j.scienta.2016.07.003. (PMID: 10.1016/j.scienta.2016.07.003)
      Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. Plant Horm. https://doi.org/10.1007/978-1-4020-2686-7_1. (PMID: 10.1007/978-1-4020-2686-7_1)
      del Rio LA, Javier Corpas F, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792. https://doi.org/10.1016/j.phytochem.2004.02.001. (PMID: 10.1016/j.phytochem.2004.02.00115081277)
      Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540. https://doi.org/10.1080/00103624.2013.863911. (PMID: 10.1080/00103624.2013.863911)
      Devanna BN, Jaswal R, Singh PK et al (2021) Role of transporters in plant disease resistance. Physiol Plant 171:849–867. https://doi.org/10.1111/ppl.13377. (PMID: 10.1111/ppl.1337733639002)
      Dilnawaz F, Kalaji MH, Misra AN (2023) Nanotechnology in improving photosynthesis under adverse climatic conditions: Cell to Canopy action. Plant Nano Biology 4:100035. https://doi.org/10.1016/j.plana.2023.100035.
      Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plant 132:491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x. (PMID: 10.1111/j.1399-3054.2007.01023.x18334002)
      Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x. (PMID: 10.1111/j.1399-3054.2008.01135.x18494856)
      El-Shetehy M, Moradi A, Maceroni M et al (2020) Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat Nanotechnol 16:344–353. https://doi.org/10.1038/s41565-020-00812-0. (PMID: 10.1038/s41565-020-00812-033318639)
      Falco WF, Scherer MD, Oliveira SL et al (2020) Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ 701:134816. https://doi.org/10.1016/j.scitotenv.2019.134816. (PMID: 10.1016/j.scitotenv.2019.13481631704404)
      Fan X, Cao X, Zhou H et al (2020) Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ Exp Bot 179:104203. https://doi.org/10.1016/j.envexpbot.2020.104203. (PMID: 10.1016/j.envexpbot.2020.104203)
      Feil SB, Rodegher G, Gaiotti F et al (2021) Physiological and molecular investigation of urea uptake dynamics in Cucumis sativus L. plants fertilized with urea-doped amorphous calcium phosphate nanoparticles. Front Plant Sci. https://doi.org/10.3389/fpls.2021.745581. (PMID: 10.3389/fpls.2021.745581349501618688946)
      Ferrari E, Barbero F, Busquets-Fité M et al (2021) Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings. Nanomaterials 11:3161. https://doi.org/10.3390/nano11123161. (PMID: 10.3390/nano11123161349475108707008)
      Fiol DF, Terrile MC, Frik J et al (2021) Nanotechnology in plants: recent advances and challenges. J Chem Tech Biotech 96:2095–2108. https://doi.org/10.1002/jctb.6741. (PMID: 10.1002/jctb.6741)
      Fraceto LF, Grillo R, de Medeiros GA et al (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci. https://doi.org/10.3389/fenvs.2016.00020. (PMID: 10.3389/fenvs.2016.00020)
      Frazier TP, Burklew CE, Zhang B (2013) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genom 14:75–83. https://doi.org/10.1007/s10142-013-0341-4. (PMID: 10.1007/s10142-013-0341-4)
      Gade A, Ingle P, Nimbalkar U et al (2023) Nanofertilizers: the next generation of agrochemicals for long-term impact on sustainability in farming systems. Agrochemicals 2:257–278. https://doi.org/10.3390/agrochemicals2020017. (PMID: 10.3390/agrochemicals2020017)
      Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol. https://doi.org/10.1021/es402249b. (PMID: 10.1021/es402249b23951999)
      Ghorbel M, Brini F, Sharma A, Landi M (2021) Role of jasmonic acid in plants: the molecular point of view. Plant Cell Rep 40:1471–1494. https://doi.org/10.3390/ijms21030782. (PMID: 10.3390/ijms2103078233821356)
      Ghosh SK, Bera T (2021) Molecular mechanism of nano-fertilizer in plant growth and development: a recent account. Adv Nano-Fertil Nano-Pestic Agri. https://doi.org/10.1016/b978-0-12-820092-6.00022-7. (PMID: 10.1016/b978-0-12-820092-6.00022-7)
      Ghouri F, Shahid MJ, Liu J et al (2023) Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice by modulating oxidative stress and expression levels of sucrose and metal-transporter genes. J Hazard Mater 448:130991. https://doi.org/10.1016/j.jhazmat.2023.130991. (PMID: 10.1016/j.jhazmat.2023.13099136860085)
      Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit Rev Plant Sci 22:453–470. https://doi.org/10.1080/07352680390243512. (PMID: 10.1080/07352680390243512)
      Gopalakrishnan Nair PM, Kim S-H, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958. https://doi.org/10.1007/s11738-014-1667-9. (PMID: 10.1007/s11738-014-1667-9)
      Goyer R (1995) Nutrition and metal toxicity. Am J Clin Nutr 61:646S-650S. https://doi.org/10.1093/ajcn/61.3.646s. (PMID: 10.1093/ajcn/61.3.646s7879732)
      Grillo R, Mattos BD, Antunes DR et al (2021) Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today 37:101078. https://doi.org/10.1016/j.nantod.2021.101078. (PMID: 10.1016/j.nantod.2021.101078)
      Ha N, Seo E, Kim S, Lee SJ (2021) Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Sci Rep. https://doi.org/10.1038/s41598-021-91073-x. (PMID: 10.1038/s41598-021-91073-x349341368692587)
      Hai NN, Chuong NN, Tu NHC et al (2020) Role and regulation of cytokinins in plant response to drought stress. Plants 9:422. https://doi.org/10.3390/plants9040422. (PMID: 10.3390/plants9040422322442727238249)
      Hall DW, Stern W (2012) Plant anatomy. Forens Bot Pract. https://doi.org/10.1002/9781119945734. (PMID: 10.1002/9781119945734)
      Hansel FD, Amado TJC, Bortolotto RP et al (2014) Influence of different phosphorus sources on fertilization efficiency. Revista Brasileira De Tecnologia Aplicada Nas Ciências Agrárias. https://doi.org/10.5935/paet.v7.n1.12. (PMID: 10.5935/paet.v7.n1.12)
      Hong J, Jia S, Wang C et al (2023) Transcriptome reveals the exposure effects of CeO2 nanoparticles on pakchoi (Brassica chinensis L.) photosynthesis. J Hazard Mater 444:130427. https://doi.org/10.1016/j.jhazmat.2022.130427. (PMID: 10.1016/j.jhazmat.2022.13042736410248)
      Hu P, An J, Faulkner MM et al (2020) Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14:7970–7986. https://doi.org/10.1021/acsnano.9b09178. (PMID: 10.1021/acsnano.9b0917832628442)
      Hubbard JD, Lui A, Landry MP (2020) Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants. Curr Opin Chem Eng 30:135–143. https://doi.org/10.1016/j.coche.2020.100659. (PMID: 10.1016/j.coche.2020.100659)
      Hussain S, Iqbal N, Brestic M et al (2019) Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ 658:626–637. https://doi.org/10.1016/j.scitotenv.2018.12.182. (PMID: 10.1016/j.scitotenv.2018.12.18230580217)
      Imada K, Sakai S, Kajihara H et al (2015) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560. https://doi.org/10.1111/ppa. (PMID: 10.1111/ppa)
      Iqbal N, Khan NA, Ferrante A et al (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00475. (PMID: 10.3389/fpls.2017.00475293124315744040)
      Jaberzadeh A, Moaveni P, Tohidi Moghadam HR, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hort Agrobot Cluj 41:201. https://doi.org/10.15835/nbha4119093. (PMID: 10.15835/nbha4119093)
      Jangir N, Marik D, Verma D, Dey A, Shekhawat RS, Patel D, Yadav P, Sankhala K, Sadhukhan A (2024) Effects of nano urea on growth and gene expression of Arabidopsis thalianain hydroponics. Cold Spring Harb Lab. https://doi.org/10.1101/2024.03.20.585664. (PMID: 10.1101/2024.03.20.585664)
      Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lit 22:53–64. https://doi.org/10.1515/botlit-2016-0005. (PMID: 10.1515/botlit-2016-0005)
      Jiang M, Dai S, Wang B et al (2021) Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice. Environ Sci Nano 8:1042–1056. https://doi.org/10.1039/d0en01172j. (PMID: 10.1039/d0en01172j)
      Jia-Yi Y, Meng-Qiang S, Zhi-Liang C et al (2022) Effect of foliage applied chitosan-based silicon nanoparticles on arsenic uptake and translocation in rice (Oryza sativa L.). J Hazard Mater 433:128781. https://doi.org/10.1016/j.jhazmat.2022.128781. (PMID: 10.1016/j.jhazmat.2022.12878135405587)
      Jin Y, Fan X, Li X et al (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ Pollut 228:517–527. https://doi.org/10.1016/j.envpol.2017.04.073. (PMID: 10.1016/j.envpol.2017.04.07328576325)
      Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799. https://doi.org/10.1016/j.molcel.2004.05.027. (PMID: 10.1016/j.molcel.2004.05.02715200956)
      Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474. https://doi.org/10.1021/es3019397. (PMID: 10.1021/es301939722784043)
      Kaphle A, Navya PN, Umapathi A, Daima HK (2017) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58. https://doi.org/10.1007/s10311-017-0662-y. (PMID: 10.1007/s10311-017-0662-y)
      Kasote DM, Lee JHJ, Jayaprakasha GK, Patil BS (2019) Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain Chem Eng 7:5142–5151. https://doi.org/10.1021/acssuschemeng.8b06013. (PMID: 10.1021/acssuschemeng.8b06013)
      Kaveh R, Li Y-S, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644. https://doi.org/10.1021/es402209w. (PMID: 10.1021/es402209w23962165)
      Ke M, Qu Q, Peijnenburg WJGM et al (2018) Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci Total Environ 644:1070–1079. https://doi.org/10.1016/j.scitotenv.2018.07.061. (PMID: 10.1016/j.scitotenv.2018.07.06130743820)
      Keller AA, Huang Y, Nelson J (2018) Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J Nanopart Res. https://doi.org/10.1038/srep04929. (PMID: 10.1038/srep04929)
      Khalid U, Sher F, Noreen S et al (2022) Comparative effects of conventional and nano-enabled fertilizers on morphological and physiological attributes of Caesalpinia bonducella plants. J Saudi Soc Agric Sci 21:61–72. https://doi.org/10.1016/j.jssas.2021.06.011. (PMID: 10.1016/j.jssas.2021.06.011)
      Khan MN, Mohammad F, Mobin M, Saqib MA (2014) Tolerance of plants to abiotic stress: a role of nitric oxide and calcium. Nitric Oxide Plants Metab Role Stress Physiol. https://doi.org/10.1007/978-3-319-06710-0_14. (PMID: 10.1007/978-3-319-06710-0_14)
      Khan AR, Wakeel A, Muhammad N et al (2019) Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes inArabidopsis thaliana leaves. Environ Sci Nano 6:341–355. https://doi.org/10.1039/C8EN00971F. (PMID: 10.1039/C8EN00971F)
      Khan N, Bano A, Ali S, Babar MdA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203. https://doi.org/10.1007/s10725-020-00571-x. (PMID: 10.1007/s10725-020-00571-x)
      Khan I, Awan SA, Rizwan M et al (2022) Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environ Sci Pollut Res 29:89823–89833. https://doi.org/10.1007/s11356-022-23945-2. (PMID: 10.1007/s11356-022-23945-2)
      Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135. https://doi.org/10.1021/nn204643g. (PMID: 10.1021/nn204643g22360840)
      Kleinhofs A, Behki R (1977) Prospects for plant genome modification by nonconventional methods. Annu Rev Genet 11:79–101. https://doi.org/10.1146/annurev.ge.11.120177.000455. (PMID: 10.1146/annurev.ge.11.120177.000455271480)
      Konappa N, Krishnamurthy S, Arakere UC, Chowdappa S, Akbarbasha R, Ramachandrappa NS (2021) Nanofertilizers and nanopesticides: recent trends, future prospects in agriculture. Adv Nano-Fertil Nano-Pestic Agri. https://doi.org/10.1016/b978-0-12-820092-6.00012-4. (PMID: 10.1016/b978-0-12-820092-6.00012-4)
      Kumar A, Singh A, Panigrahy M et al (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37:901–912. https://doi.org/10.1007/s00299-018-2277-6. (PMID: 10.1007/s00299-018-2277-629541883)
      Kumar M, Kesawat MS, Ali A et al (2019) Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants 8:592. https://doi.org/10.3390/plants8120592. (PMID: 10.3390/plants8120592318358636963649)
      Kumar Y, Tiwari KN, Nayak RK, Rai A, Singh SP, Singh AN, Kumar Y, Tomar H, Singh T, Raliya R (2020) Nanofertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Ind J Fertil 16:772–786.
      Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302. https://doi.org/10.1021/nl903518f. (PMID: 10.1021/nl903518f202186622912449)
      Kusiak M, Sozoniuk M, Larue C et al (2023) Transcriptional response of Cu-deficient barley (Hordeum vulgare L.) to foliar-applied nano-Cu: molecular crosstalk between Cu loading into plants and changes in Cu homeostasis genes. NanoImpact 31:100472. https://doi.org/10.1016/j.impact.2023.100472. (PMID: 10.1016/j.impact.2023.10047237453617)
      Lamotte O, Courtois C, Dobrowolska G et al (2006) Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radical Biol Med 40:1369–1376. https://doi.org/10.1016/j.freeradbiomed.2005. (PMID: 10.1016/j.freeradbiomed.2005)
      Larsen B, Xu D, Halkier BA, Nour-Eldin HH (2017) Advances in methods for identification and characterization of plant transporter function. J Exp Bot 68:4045–4056. https://doi.org/10.1093/jxb/erx140. (PMID: 10.1093/jxb/erx14028472492)
      Larue C, Laurette J, Herlin-Boime N et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073. (PMID: 10.1016/j.scitotenv.2012.04.07322684121)
      Layet C, Auffan M, Santaella C et al (2017) Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol 51:9756–9764. https://doi.org/10.1021/acs.est.7b02397. (PMID: 10.1021/acs.est.7b0239728777564)
      Li S, Wang Z, Miao Y, Li S (2014) Soil organic nitrogen and its contribution to crop production. J Integr Agric 13:2061–2080. https://doi.org/10.1016/s2095-3119(14)60847-9. (PMID: 10.1016/s2095-3119(14)60847-9)
      Li X, Ke M, Zhang M et al (2018) The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environ Pollut 232:212–219. https://doi.org/10.1016/j.envpol.2017.09.034. (PMID: 10.1016/j.envpol.2017.09.03428931464)
      Li P, Wang A, Du W et al (2020) Insight into the interaction between Fe-based nanomaterials and maize (Zea mays) plants at metabolic level. Sci Total Environ 738:139795. https://doi.org/10.1016/j.scitotenv.2020.139795. (PMID: 10.1016/j.scitotenv.2020.13979532526416)
      Lian J, Zhao L, Wu J et al (2020) Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 239:124794. https://doi.org/10.1016/j.chemosphere.2019.124794. (PMID: 10.1016/j.chemosphere.2019.12479431521929)
      Lian J, Liu W, Meng L et al (2021) Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environ Pollut 280:116978. https://doi.org/10.1016/j.envpol.2021.116978. (PMID: 10.1016/j.envpol.2021.11697833780844)
      Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104. (PMID: 10.1016/j.scitotenv.2015.01.10425659311)
      Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z (2005) Responses of peanut to nano-calcium carbonate. J Plant Nutr Soil Sci 11(3):385389.
      Liu C, Yu Y, Liu H, Xin H (2021) Effect of different copper oxide particles on cell division and related genes of soybean roots. Plant Physiol Biochem 163:205–214. https://doi.org/10.1016/j.plaphy.2021.03.051. (PMID: 10.1016/j.plaphy.2021.03.05133862500)
      Liu S, Jiang J, Ma Z et al (2022) The role of hydroxycinnamic acid amide pathway in plant immunity. Front Plant Sci 13:922119. https://doi.org/10.3389/fpls.2022.922119. (PMID: 10.3389/fpls.2022.922119358129059257175)
      Lu X, Sun D, Zhang X et al (2020) Stimulation of photosynthesis and enhancement of growth and yield in Arabidopsis thaliana treated with amine-functionalized mesoporous silica nanoparticles. Plant Physiol Biochem 156:566–577. https://doi.org/10.1016/j.plaphy.2021.02.008. (PMID: 10.1016/j.plaphy.2021.02.00833065377)
      Lv J, Christie P, Zhang S (2019a) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59. https://doi.org/10.1039/C8EN00645H. (PMID: 10.1039/C8EN00645H)
      Lv J, Christie P, Zhang S (2019b) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59. https://doi.org/10.1039/C8EN00645H. (PMID: 10.1039/C8EN00645H)
      Ma X, Yan J (2018) Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr Opin Environ Sci Health 6:16–20. https://doi.org/10.1016/j.coesh.2018.07.008. (PMID: 10.1016/j.coesh.2018.07.008)
      Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3:1369–1379. https://doi.org/10.1039/c6en00189k. (PMID: 10.1039/c6en00189k)
      Majumdar S, Almeida IC, Arigi EA et al (2015) Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis. Environ Sci Technol 49:13283–13293. https://doi.org/10.1021/acs.est.5b03452. (PMID: 10.1021/acs.est.5b0345226488752)
      Manjili M, Bidarigh S, Amiri E (2014) Study the effect of foliar application of nano chelate molybdenum fertilizer on the yield and yield components of peanut. Egypt Acad J Biol Sci H Bot 5:67–71. https://doi.org/10.21608/eajbsh.2014.16829. (PMID: 10.21608/eajbsh.2014.16829)
      Marmiroli M, Imperiale D, Pagano L et al (2015) The Proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots, and its correlation with the transcriptomic response. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01104. (PMID: 10.3389/fpls.2015.01104267328714679877)
      Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239. https://doi.org/10.1021/es202995d. (PMID: 10.1021/es202995d22892035)
      Mirzajani F, Askari H, Hamzelou S et al (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54. https://doi.org/10.1016/j.ecoenv.2012.10.018. (PMID: 10.1016/j.ecoenv.2012.10.01823174269)
      Mirzajani F, Askari H, Hamzelou S et al (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339. https://doi.org/10.1016/j.ecoenv.2014.07.013. (PMID: 10.1016/j.ecoenv.2014.07.01325124680)
      Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants. Emerg Technol Manag Crop Stress Toler. https://doi.org/10.1016/B978-0-12-800876-8.00008-4. (PMID: 10.1016/B978-0-12-800876-8.00008-4)
      Mishra AK, Choi J, Rabbee MF, Baek K-H (2019) In SilicoGenome-wide analysis of the ATP-binding cassette transporter gene family in soybean (Glycine max L.) and their expression profiling. Biomed Res Int 2019:1–14. https://doi.org/10.1155/2019/8150523. (PMID: 10.1155/2019/8150523)
      Mohanta TK, Bashir T, Hashem A et al (2018) Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. J Plant Growth Regul 37:1033–1049. https://doi.org/10.1007/s00344-018-9833-8. (PMID: 10.1007/s00344-018-9833-8)
      Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants. Plant Signal Behav 6:210–214. https://doi.org/10.4161/psb.6.2.14878. (PMID: 10.4161/psb.6.2.14878213258893121980)
      Mustafa G, Sakata K, Komatsu S (2016) Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteom 148:113–125. https://doi.org/10.1016/j.jprot.2016.07.027.
      Mushtaq W, Shakeel A, Fazili MA et al (2020) Pros and cons of nanotechnology. Nanotechnol Life Sci. https://doi.org/10.1007/978-3-030-39978-8_13. (PMID: 10.1007/978-3-030-39978-8_13)
      Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. IJMS 21:5208. https://doi.org/10.3390/ijms21155208. (PMID: 10.3390/ijms21155208327178207432042)
      Nawaz S, Bano A (2020) Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber. FNA 11:124–136. https://doi.org/10.2174/2212798410666190716162340. (PMID: 10.2174/2212798410666190716162340)
      Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep 7:40829. https://doi.org/10.1038/srep40829. (PMID: 10.1038/srep40829280943085240101)
      Nongbet A, Mishra AK, Mohanta YK et al (2022) Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants 11:2587. https://doi.org/10.3390/plants11192587. (PMID: 10.3390/plants11192587362354549573764)
      Noori A, White JC, Newman LA (2017) Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. J Nanopart Res. https://doi.org/10.1007/s11051-016-3650-4. (PMID: 10.1007/s11051-016-3650-4)
      Oliveri Conti G, Ferrante M, Banni M et al (2020) Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res 187:109677. https://doi.org/10.1016/j.envres.2020.109677. (PMID: 10.1016/j.envres.2020.10967732454310)
      Owusu Adjei M, Zhou X, Mao M et al (2021) Magnesium oxide nanoparticle effect on the growth, development, and microRNAs expression of Ananas comosus var. bracteatus. J Plant Interact 16:247–257. https://doi.org/10.1080/17429145.2021.1931720. (PMID: 10.1080/17429145.2021.1931720)
      Parkinson SJ, Tungsirisurp S, Joshi C et al (2022) Polymer nanoparticles pass the plant interface. Nat Commun. https://doi.org/10.1038/s41467-022-35066-y. (PMID: 10.1038/s41467-022-35066-y364507969712430)
      Pejam F, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021) Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. PLoS ONE 16:e0248778. https://doi.org/10.1371/journal.pone.0248778. (PMID: 10.1371/journal.pone.0248778337509697984648)
      Peng D, Zhang Y, Li Q et al (2020) Exogenous application and endogenous elevation of salicylic acid levels by overexpressing a salicylic acid-binding protein 2 gene enhance nZnO tolerance of tobacco plants. Plant Soil 450:443–461. https://doi.org/10.1007/s11104-020-04521-4. (PMID: 10.1007/s11104-020-04521-4)
      Péret B, De Rybel B, Casimiro I et al (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408. https://doi.org/10.1016/j.tplants.2009.05.002. (PMID: 10.1016/j.tplants.2009.05.00219559642)
      Pérez-de-Luque A (2017) Interaction of nanomaterials with plants what do we need for real applications in agriculture? Front Environ Sci. https://doi.org/10.3389/fenvs.2017.00012. (PMID: 10.3389/fenvs.2017.00012)
      Pociecha E, Gorczyca A, Dziurka M et al (2021) Silver nanoparticles and silver ions differentially affect the phytohormone balance and yield in wheat. Agriculture 11:729. https://doi.org/10.3390/agriculture11080729. (PMID: 10.3390/agriculture11080729)
      Prasad A, Astete CE, Bodoki AE et al (2017) Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J Agric Food Chem 66:6544–6551. https://doi.org/10.1021/acs.jafc.7b02487. (PMID: 10.1021/acs.jafc.7b0248728767239)
      Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328. https://doi.org/10.1016/j.devcel.2020.10.012. (PMID: 10.1016/j.devcel.2020.10.01224214855)
      Raguraj S, Wijayathunga WMS, Gunaratne GP et al (2020) Urea–hydroxyapatite nanohybrid as an efficient nutrient source inCamellia sinensis (L.) Kuntze (tea). J Plant Nutr 43:2383–2394. https://doi.org/10.1080/01904167.2020.1771576. (PMID: 10.1080/01904167.2020.1771576)
      Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57. https://doi.org/10.1007/s40003-012-0049-z. (PMID: 10.1007/s40003-012-0049-z)
      Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503. https://doi.org/10.1021/acs.jafc.7b02178. (PMID: 10.1021/acs.jafc.7b0217828835103)
      Rastogi A (2019) Industrial Nanoparticles and Their Influence on Gene Expression in Plants. Nanomater Plants Algae Microorgan. https://doi.org/10.1016/B978-0-12-811488-9.00005-6. (PMID: 10.1016/B978-0-12-811488-9.00005-6)
      Rautela I, Dheer P, Thapliyal P, Shah D, Joshi M, Upadhyay S, Gururani P, Sinha VB, Gaurav N, Sharma MD (2021) Current scenario and future perspectives of nanotechnology in sustainable agriculture and food production. Plant Cell Biotechnol Mol Biol 22:99–121.
      Rehmanullah MZ, Inayat N, Majeed A (2020) Application of nanoparticles in agriculture as fertilizers and pesticides: challenges and opportunities. New Front Stress Manag Durable Agri. https://doi.org/10.1007/978-981-15-1322-0_17. (PMID: 10.1007/978-981-15-1322-0_17)
      Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498. https://doi.org/10.1021/jf104517j. (PMID: 10.1021/jf104517j214050203086136)
      Rizwan M, Ali S, Adrees M et al (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879. https://doi.org/10.1007/s11356-016-6436-4. (PMID: 10.1007/s11356-016-6436-4)
      Sabo-Attwood T, Unrine JM, Stone JW et al (2011) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360. https://doi.org/10.3109/17435390.2011.579631. (PMID: 10.3109/17435390.2011.57963121574812)
      Salehi H, De Diego N, Chehregani Rad A et al (2021) Exogenous application of ZnO nanoparticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Sci Total Environ 778:146331. https://doi.org/10.1016/j.scitotenv.2021.146331. (PMID: 10.1016/j.scitotenv.2021.14633133725605)
      Sarmast MK, Niazi A, Salehi H, Abolimoghadam A (2014) Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tiss Organ Cult 121:227–236. https://doi.org/10.1007/s11240-014-0697-8. (PMID: 10.1007/s11240-014-0697-8)
      Savci S (2012) An agricultural pollutant: chemical fertilizer. IJESD. https://doi.org/10.7763/ijesd.2012.v3.191. (PMID: 10.7763/ijesd.2012.v3.191)
      Schwab F, Zhai G, Kern M et al (2015a) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278. https://doi.org/10.3109/17435390.2015.1048326. (PMID: 10.3109/17435390.2015.104832626067571)
      Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015b) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology 10:257–278. https://doi.org/10.3109/17435390.2015.1048326. (PMID: 10.3109/17435390.2015.104832626067571)
      Schwabe F, Schulin R, Limbach LK et al (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520. https://doi.org/10.1016/j.chemosphere.2012.12.025. (PMID: 10.1016/j.chemosphere.2012.12.02523352517)
      Semida WM, Abdelkhalik A, GamalF M et al (2021) Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10:421. https://doi.org/10.3390/plants10020421. (PMID: 10.3390/plants10020421336724297926631)
      Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643. https://doi.org/10.1021/es300955b. (PMID: 10.1021/es300955b22715806)
      Seyed Sharifi R, Khorram DLS (2015) The effect of nanooxide on fertilization and inoculation of seeds with bacterium vulgaris (Glycine max L.). Iran Agric Res. https://doi.org/10.22067/gsc.v13i4.32491. (PMID: 10.22067/gsc.v13i4.32491)
      Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001. https://doi.org/10.1088/1748-9326/9/2/024001. (PMID: 10.1088/1748-9326/9/2/024001)
      Shahrokh SHB (2014) The impact of silver nanoparticles on bacterial aerobic nitrate reduction process. J Bioprocess Biotech. https://doi.org/10.4172/2155-9821.1000152. (PMID: 10.4172/2155-9821.1000152)
      Shang Y, Hasan MdK, Ahammed GJ et al (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558. https://doi.org/10.3390/molecules24142558. (PMID: 10.3390/molecules24142558313370706680665)
      Shang H, Ma C, Li C et al (2020) Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L.) by multiple mechanisms: contact-mortality, nutritional modulation and phytohormone regulation. Environ Sci Nano 7:2632–2643. https://doi.org/10.1039/D0EN00535E. (PMID: 10.1039/D0EN00535E)
      Sharifi SR, Khoramdel S (2016) Effects of Nano-Zinc oxide and seed inoculation by plant growth promoting Rhizobacteria (PGPR) on yield, yield components and grain filling period of soybean (Glycine max L.). Iranian J. Field Crops Res. 13(4):738-753. https://doi.org/10.22067/gsc.v13i4.32491.
      Sharma B, Lakra U, Sharma R, Sharma SR (2022a) A comprehensive review on nanopesticides and nanofertilizers—a boon for agriculture. Nano-Enabled Agrochem Agri. https://doi.org/10.1016/b978-0-323-91009-5.00026-4. (PMID: 10.1016/b978-0-323-91009-5.00026-4)
      Sharma A, Vishwakarma K, Singh NK et al (2022b) Synergistic action of silicon nanoparticles and indole acetic acid in alleviation of chromium (CrVI) toxicity in Oryza sativa seedlings. J Biotechnol 343:71–82. https://doi.org/10.1016/j.jbiotec.2021.09.005. (PMID: 10.1016/j.jbiotec.2021.09.00534534595)
      Sheteiwy MS, Dong Q, An J et al (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul 83:27–41. https://doi.org/10.1007/s10725-017-0281-4. (PMID: 10.1007/s10725-017-0281-4)
      Simon DF, Domingos RF, Hauser C et al (2013) Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 79:4774–4785. https://doi.org/10.1128/AEM.00998-13. (PMID: 10.1128/AEM.00998-13237288193754720)
      Singh A, Singh NB, Hussain I et al (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4:25–40.
      Singh S, Vishwakarma K, Singh S et al (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272. https://doi.org/10.1016/j.plgene.2017.03.006. (PMID: 10.1016/j.plgene.2017.03.006)
      Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254. https://doi.org/10.1021/es300949f. (PMID: 10.1021/es300949f22889047)
      Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578. https://doi.org/10.1116/1.2815690. (PMID: 10.1116/1.281569018694318)
      Song A, Li P, Fan F et al (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9:e113782. https://doi.org/10.1371/journal.pone.0113782. (PMID: 10.1371/journal.pone.0113782254269374245220)
      Song C, Huang M, White JC et al (2020) Metabolic profile and physiological response of cucumber foliar exposed to engineered MoS2 and TiO2 nanoparticles. NanoImpact 20:100271. https://doi.org/10.1016/j.impact.2020.100271. (PMID: 10.1016/j.impact.2020.100271)
      Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M et al (2020) Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ Pollut 265:11472s7. https://doi.org/10.1016/j.envpol.2020.114727. (PMID: 10.1016/j.envpol.2020.114727)
      Spielman-Sun E, Lombi E, Donner E et al (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51:7361–7368. https://doi.org/10.1021/acs.est.7b00813. (PMID: 10.1021/acs.est.7b0081328575574)
      Su Y, Ashworth V, Kim C et al (2019) Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ Sci Nano 6:2311–2331. https://doi.org/10.1039/c9en00461k. (PMID: 10.1039/c9en00461k)
      Sun J, Wang L, Li S et al (2017) Toxicity of silver nanoparticles to Arabidopsis: inhibition of root gravitropism by interfering with auxin pathway. Enviro Toxic Chem 36:2773–2780. https://doi.org/10.1002/etc.3833. (PMID: 10.1002/etc.3833)
      Sun L, Song F, Guo J et al (2020a) Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. IJMS 21:782. https://doi.org/10.3390/ijms21030782. (PMID: 10.3390/ijms21030782319917607037681)
      Sun L, Wang Y, Wang R et al (2020b) Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ Sci Nano 7:3587–3604. https://doi.org/10.1039/D0EN00723D. (PMID: 10.1039/D0EN00723D)
      Sun H, Lei C, Xu J, Li R (2021) Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J Hazard Mater 416:125854. https://doi.org/10.1016/j.jhazmat.2021.125854. (PMID: 10.1016/j.jhazmat.2021.12585433892383)
      Sun H, Wang M, Wang J, Wang W (2022) Surface charge affects foliar uptake, transport and physiological effects of functionalized graphene quantum dots in plants. Sci Total Environ 812:151506. https://doi.org/10.1016/j.scitotenv.2021.151506. (PMID: 10.1016/j.scitotenv.2021.15150634762943)
      Sytar O, Kumari P, Yadav S et al (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38:739–752. https://doi.org/10.1007/s00344-018-9886-8. (PMID: 10.1007/s00344-018-9886-8)
      Syu Y, Hung JH, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010. (PMID: 10.1016/j.plaphy.2014.07.01025090087)
      Taiz L (2013) Agriculture, plant physiology, and human population growth: past, present, and future. Theor Exp Plant Physiol. https://doi.org/10.1590/s2197-00252013000300001. (PMID: 10.1590/s2197-00252013000300001)
      Takata K (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83. https://doi.org/10.1016/j.proghi.2004.03.001. (PMID: 10.1016/j.proghi.2004.03.00115242101)
      Tan W, Deng C, Wang Y et al (2019) Interaction of nanomaterials in secondary metabolites accumulation, photosynthesis, and nitrogen fixation in plant systems. Compr Anal Chem. https://doi.org/10.1016/bs.coac.2019.04.006. (PMID: 10.1016/bs.coac.2019.04.006)
      Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793. https://doi.org/10.1371/journal.pone.0093793. (PMID: 10.1371/journal.pone.0093793247365223988041)
      Thavaseelan D, Priyadarshana G (2021) Nanofertilizer use for sustainable agriculture. J Res Technol Eng 2(1):41–59.
      Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264. https://doi.org/10.1073/pnas.1116437108. (PMID: 10.1073/pnas.1116437108221062953250154)
      Tiwari S, Singh P, Tiwari R et al (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916. https://doi.org/10.1007/s00374-011-0598-5. (PMID: 10.1007/s00374-011-0598-5)
      Tiwari M, Krishnamurthy S, Shukla D et al (2016) Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis. Sci Rep. https://doi.org/10.1038/srep21733. (PMID: 10.1038/srep21733279290475144149)
      Tombuloglu H, Slimani Y, Tombuloglu G et al (2019) Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere 226:110–122. https://doi.org/10.1016/j.chemosphere.2019.03.075. (PMID: 10.1016/j.chemosphere.2019.03.07530925403)
      Tripathi DK, Singh S, Singh S et al (2017a) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177. https://doi.org/10.1016/j.plaphy.2016.06.015. (PMID: 10.1016/j.plaphy.2016.06.01527449300)
      Tripathi DK, Shweta SS, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017b) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. PPB 110:2–12. https://doi.org/10.1016/j.plaphy.2016.07.030. (PMID: 10.1016/j.plaphy.2016.07.03027601425)
      Tripathi D, Singh M, Pandey-Rai S (2022) Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 6:100107. https://doi.org/10.1016/j.stress.2022.100107. (PMID: 10.1016/j.stress.2022.100107)
      Tuteja N, Mahajan S (2007) Calcium signaling network in plants. Plant Signal Behav 2:79–85. https://doi.org/10.4161/psb.2.2.4176. (PMID: 10.4161/psb.2.2.4176195169722633903)
      Uzu G, Sobanska S, Sarret G et al (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042. https://doi.org/10.1021/es902190u. (PMID: 10.1021/es902190u20063891)
      Vandelle E, Poinssot B, Wendehenne D et al (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. MPMI 19:429–440. https://doi.org/10.1094/mpmi-19-0429. (PMID: 10.1094/mpmi-19-042916610746)
      Vankova R, Landa P, Podlipna R et al (2017) ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci Total Environ 593–594:535–542. https://doi.org/10.1016/j.scitotenv.2017.03.160. (PMID: 10.1016/j.scitotenv.2017.03.16028360003)
      Vannini C, Domingo G, Onelli E et al (2013) Morphological and proteomic responses of eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8:e68752. https://doi.org/10.1371/journal.pone.0068752. (PMID: 10.1371/journal.pone.0068752238747473715538)
      Vannini C, Domingo G, Onelli E et al (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148. https://doi.org/10.1016/j.jplph.2014.05.002. (PMID: 10.1016/j.jplph.2014.05.00224973586)
      Vega-Vásquez P, Mosier NS, Irudayaraj J (2020) Nanoscale drug delivery systems: from medicine to agriculture. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00079.
      Verma KK, Song XP, Joshi A et al (2022) Nanofertilizer possibilities for healthy soil, water, and food in future: an overview. Front Plant Sci. https://doi.org/10.3389/fpls.2022.865048. (PMID: 10.3389/fpls.2022.865048366847319816422)
      Vinković T, Novák O, Strnad M et al (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18. https://doi.org/10.30848/PJB2021-2(40). (PMID: 10.30848/PJB2021-2(40)28314149)
      Wahid I, Kumari S, Ahmad R et al (2020) Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules 10:1506. https://doi.org/10.3390/biom10111506. (PMID: 10.3390/biom10111506331478207694077)
      Wahid I, Rani P, Kumari S et al (2022) Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere 287:132142. https://doi.org/10.1016/j.chemosphere.2021.132142. (PMID: 10.1016/j.chemosphere.2021.13214234826894)
      Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res. https://doi.org/10.1007/s11051-013-1417-8. (PMID: 10.1007/s11051-013-1417-8243397283853645)
      Wang P, Lombi E, Zhao F-J, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712. https://doi.org/10.1016/j.tplants.2016.04.005. (PMID: 10.1016/j.tplants.2016.04.00527130471)
      Wang Z, Xu L, Zhao J et al (2016b) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008–6016. https://doi.org/10.1021/acs.est.6b01017. (PMID: 10.1021/acs.est.6b0101727226046)
      Wang P, Lombi E, Sun S et al (2017a) Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ Sci Nano 4:448–460. https://doi.org/10.1039/C6EN00489J. (PMID: 10.1039/C6EN00489J328023347424533)
      Wang Y, Chang CH, Ji Z, Bouchard DC, Nisbet RM, Schimel JP, Gardea-Torresdey JL, Holden PA (2017b) Agglomeration determines effects of carbonaceous nanomaterials on soybean nodulation, dinitrogen fixation potential, and growth in soil. ACS Nano 11:5753–5765. https://doi.org/10.1021/acsnano.7b01337. (PMID: 10.1021/acsnano.7b01337285492165860665)
      Wang Y, Chen R, Hao Y et al (2017c) Transcriptome analysis reveals differentially expressed genes (DEGs) related to lettuce (Lactuca sativa) treated by TiO2/ZnO nanoparticles. Plant Growth Regul 83:13–25. https://doi.org/10.1007/s10725-017-0280-5. (PMID: 10.1007/s10725-017-0280-5)
      Wang J, Song L, Gong X et al (2020a) Functions of jasmonic acid in plant regulation and response to abiotic stress. IJMS 21:1446. https://doi.org/10.3390/ijms21041446. (PMID: 10.3390/ijms21041446320933367073113)
      Wang L, Sun J, Lin L et al (2020b) Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. Ecotoxicol Environ Saf 190:110072. https://doi.org/10.1016/j.ecoenv.2019.110072. (PMID: 10.1016/j.ecoenv.2019.11007231864120)
      Wang Y, Zhang P, Li M et al (2020c) Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environ Sci Nano 7:2930–2940. https://doi.org/10.1039/D0EN00757A. (PMID: 10.1039/D0EN00757A)
      Wang X, Xie H, Wang P, Yin H (2023) Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials 16:3097. https://doi.org/10.3390/ma16083097. (PMID: 10.3390/ma160830973710993310146108)
      Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060. https://doi.org/10.1039/C3CS35486E. (PMID: 10.1039/C3CS35486E23740388)
      Wei J, Zou Y, Li P, Yuan X (2020) Titanium dioxide nanoparticles promote root growth by interfering with auxin pathways in Arabidopsis thaliana. Phyton 89:883–891. https://doi.org/10.32604/phyton.2020.010973. (PMID: 10.32604/phyton.2020.010973)
      Wei X, Cao P, Wang G, Liu Y, Song J, Han J (2021) CuO, ZnO, and γ-Fe2O3 nanoparticles modified the underground biomass and rhizosphere microbial community of Salvia miltiorrhiza (Bge.) after 165-day exposure. Ecotoxicol Environ Saf 217:112232. https://doi.org/10.1016/j.ecoenv.2021.112232. (PMID: 10.1016/j.ecoenv.2021.11223233864980)
      Willmer CM, Fricker MD (1996) Stomatal responses to environmental factors. Springer, Berlin. (PMID: 10.1007/978-94-011-0579-8_6)
      Xu G-Y, Rocha PSCF, Wang M-L et al (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59. https://doi.org/10.1007/s00425-011-1386-z. (PMID: 10.1007/s00425-011-1386-z21359958)
      Xu L, Wang Y-Y, Huang J et al (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10:8996–9031. https://doi.org/10.7150/thno.45413. (PMID: 10.7150/thno.45413328021767415816)
      Yadav A, Yadav K, Abd-Elsalam KA (2023a) Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals 2:296–336. https://doi.org/10.3390/agrochemicals2020019. (PMID: 10.3390/agrochemicals2020019)
      Yadav A, Yadav K, Abd-Elsalam K (2023b) Nanofertilizers: types, delivery and advantages in agricultural sustainability. MDPI AG 2:296–336. https://doi.org/10.3390/agrochemicals2020019. (PMID: 10.3390/agrochemicals2020019)
      Yang C, Powell CA, Duan Y et al (2015) Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus huanglongbing. PLoS ONE 10:e0133826. https://doi.org/10.1371/journal.pone.0133826. (PMID: 10.1371/journal.pone.0133826262078234514888)
      Yasmeen F, Raja NI, Razzaq A, Komatsu S (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochimica Et Biophys Acta Proteins Proteom 1865:28–42. https://doi.org/10.1016/j.bbapap.2016.10.001. (PMID: 10.1016/j.bbapap.2016.10.001)
      YAVAŞ İ, (2021) The effect of nanoparticle applications on plants under some stress conditions. Turkish J Range Forage Sci 2:52–62. https://doi.org/10.51801/turkjrfs.954843. (PMID: 10.51801/turkjrfs.954843)
      Yip Delormel T, Boudsocq M (2019) Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol 224:585–604. https://doi.org/10.1111/nph.16088. (PMID: 10.1111/nph.1608831369160)
      You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2017) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18:211–221. https://doi.org/10.1007/s11368-017-1716-2. (PMID: 10.1007/s11368-017-1716-2)
      Yuan Z, Ye Y, Gao F et al (2013) Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int J Pharm 446:191–198. https://doi.org/10.1016/j.ijpharm.2013.02.024. (PMID: 10.1016/j.ijpharm.2013.02.02423422276)
      Zahedi SM, Abdelrahman M, Hosseini MS et al (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258. https://doi.org/10.1016/j.envpol.2019.04.078. (PMID: 10.1016/j.envpol.2019.04.07831319241)
      Ze Y, Liu C, Wang L et al (2010) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141. https://doi.org/10.1007/s12011-010-8901-0. (PMID: 10.1007/s12011-010-8901-021104338)
      Zeeshan M, Hu YX, Afridi MS et al (2022) Interplay of ZnONPs and/or SeNPs induces arsenic tolerance in soybean by regulation of antioxidants pool, WRKY genes, and expression of arsenic transporters. Environ Exp Bot 195:104783. https://doi.org/10.1016/j.envexpbot.2022.104783. (PMID: 10.1016/j.envexpbot.2022.104783)
      Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151. https://doi.org/10.1021/ez400202. (PMID: 10.1021/ez400202253865664224293)
      Zhang Z, Ke M, Qu Q et al (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697. https://doi.org/10.1016/j.envpol.2018.04.066. (PMID: 10.1016/j.envpol.2018.04.06629715688)
      Zhang H, Zhao Y, Zhu J-K (2020) Thriving under stress: how plants balance growth and the stress response. Dev Cell 55:529–543. https://doi.org/10.1016/j.devcel.2020.10.012. (PMID: 10.1016/j.devcel.2020.10.01233290694)
      Zhang H, Goh NS, Wang JW et al (2021) Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat Nanotechnol 17:197–205. https://doi.org/10.1038/s41565-021-01018-8. (PMID: 10.1038/s41565-021-01018-83481155310519342)
      Zhao L, Peralta-Videa JR, Ren M et al (2012a) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8. https://doi.org/10.1016/j.cej.2012.01.041. (PMID: 10.1016/j.cej.2012.01.041)
      Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138. https://doi.org/10.1016/j.jhazmat.2012.05.008. (PMID: 10.1016/j.jhazmat.2012.05.00822633924)
      Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA (2016) 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under Nano-Cu stress. Environ Sci Technol 50:2000–2010. https://doi.org/10.1021/acs.est.5b05011. (PMID: 10.1021/acs.est.5b0501126751164)
      Zhao L, Hu Q, Huang Y, Keller AA (2017a) Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu(OH)2 nanopesticide. ACS Sustainable Chem Eng 5:8294–8301. https://doi.org/10.1021/acssuschemeng.7b01968. (PMID: 10.1021/acssuschemeng.7b01968)
      Zhao L, Huang Y, Adeleye AS, Keller AA (2017b) Metabolomics reveals Cu(OH)2 nanopesticide-activated anti-oxidative pathways and decreased beneficial antioxidants in spinach leaves. Environ Sci Technol 51:10184–10194. https://doi.org/10.1021/acs.est.7b02163. (PMID: 10.1021/acs.est.7b0216328738142)
      Zhao P, Yuan W, Xu C et al (2018) Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers. J Agric Food Chem 66:11592–11600. https://doi.org/10.1021/acs.jafc.8b04415. (PMID: 10.1021/acs.jafc.8b0441530350969)
      Zhao L, Zhang H, White JC et al (2019) Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environ Sci Nano 6:1716–1727. https://doi.org/10.1039/C9EN00137A. (PMID: 10.1039/C9EN00137A)
      Zhu Z-J, Ghosh PS, Miranda OR et al (2008) Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. J Am Chem Soc 130:14139–14143. https://doi.org/10.1021/ja805392f. (PMID: 10.1021/ja805392f188262222637404)
      Zhu Z-J, Wang H, Yan B et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398. https://doi.org/10.1021/es301977w. (PMID: 10.1021/es301977w23102049)
      Zhu J, Li J, Shen Y et al (2020) Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ Sci Nano 7:3901–3913. https://doi.org/10.1039/D0EN00658K. (PMID: 10.1039/D0EN00658K)
      Zhu J, Wang J, Zhan X et al (2021a) Role of charge and size in the translocation and distribution of zinc oxide particles in wheat cells. ACS Sustainable Chem Eng 9:11556–11564. https://doi.org/10.1021/acssuschemeng.1c04080. (PMID: 10.1021/acssuschemeng.1c04080)
      Zhu J, Wang J, Zhan X et al (2021b) Role of charge and size in the translocation and distribution of zinc oxide particles in wheat cells. ACS Sustainable Chem Eng 9:11556–11564. https://doi.org/10.1021/acssuschemeng.1c04080. (PMID: 10.1021/acssuschemeng.1c04080)
    • Grant Information:
      SO/RAJ/ASD/2023-24 Indian Farmers Fertiliser Cooperative Limited (IFFCO)
    • Contributed Indexing:
      Keywords: Gene expression; Nano fertilizer; Nutrient transport; Phytohormone; Signaling; Stress tolerance
    • Accession Number:
      0 (Fertilizers)
    • Publication Date:
      Date Created: 20241125 Date Completed: 20241125 Latest Revision: 20241212
    • Publication Date:
      20241212
    • Accession Number:
      10.1007/s11103-024-01527-9
    • Accession Number:
      39586900