Accumulation of microbial hazards and assessment of food hygiene associated with broiler chicken processing at open air food markets in Maputo, Mozambique.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Science Publishers Country of Publication: Netherlands NLM ID: 8412849 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-3460 (Electronic) Linking ISSN: 01681605 NLM ISO Abbreviation: Int J Food Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Amsterdam : Elsevier Science Publishers, c1984-
    • Subject Terms:
    • Abstract:
      The burden of foodborne disease due to the consumption of animal-sourced foods is substantial in low- and middle-income countries (LMICs). Open air markets, while providing fresh and affordable foods, often have unhygienic practices that may contribute to contamination during the slaughter and processing of chicken meat. This study examines whether and how the common practice of rinse water (stored water used for rinsing broiler carcasses during processing) reuse leads to accumulation of pathogens, with potential cross contamination of chicken meat. To assess the accumulation of Campylobacter jejuni/coli, Salmonella spp., and the indicator of fecal contamination, Escherichia coli, in rinse water used during the slaughtering process at open air food markets in Maputo, Mozambique. We conducted a time-series study at three open air food markets. In a first experiment, we collected paired rinse water (N = 70), water used for chicken processing, and broiler chicken carcass (N = 60) samples from 10 vendors at 75-min intervals starting prior to any processing activity. In a second experiment, we collected 100, 50 mL rinse water samples, immediately before and after processing, from 10 vendors. Chicken processing activity and associated hygiene practices were captured through direct observation. Vendors processed 24 chickens per day, on average. In the first experiment, C. jejuni/coli and E. coli were detected in 30 % and 80 % of rinse water samples, respectively, prior to processing (baseline), and no Salmonella was detected. After the first carcass rinse, C. jejuni/coli and E. coli were detected in 100 % of samples, and Salmonella spp. was detected in 42 % of rinse water samples and 48 % of carcass samples. C. jejuni/coli showed an average 0.1 log 10 copies (95 % CI 0.0, 0.2) increase in rinse water and carcass samples every 75 min. In the second experiment, no C. jejuni/coli or Salmonella spp. were detected in baseline rinse water samples, and E. coli were detected in 78 % of baseline rinse water samples. After processing the first carcass, C. jejuni/coli were detected in 100 % of remaining samples, Salmonella spp. were detected in 28 % of pre-final rinse and 36 % of post-final rinse samples, and E. coli were detected in 81 % of pre-final rinse and 100 % of post-final rinse samples. Our results reveal that consumers are at a high risk of purchasing chicken meat contaminated with human enteropathogens. Once contaminated, rinse water stays contaminated throughout the day. Low-cost and feasible interventions implemented at the carcass wash step are needed to reduce microbial hazards on chicken meat before purchase.
      Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 Elsevier B.V. All rights reserved.)
    • References:
      Epidemiology. 2017 Nov;28(6):889-897. (PMID: 28767518)
      Emerg Infect Dis. 2007 Sep;13(9):1340-7. (PMID: 18252105)
      Foods. 2020 Mar 02;9(3):. (PMID: 32121659)
      Int J Food Sci. 2020 Feb 14;2020:2746492. (PMID: 32149074)
      Front Microbiol. 2016 Nov 22;7:1833. (PMID: 27920757)
      Trop Anim Health Prod. 2020 Jan;52(1):151-157. (PMID: 31273582)
      Lancet Planet Health. 2020 Oct;4(10):e439-e440. (PMID: 33038315)
      Appl Environ Microbiol. 2002 Mar;68(3):1122-31. (PMID: 11872459)
      Lancet Planet Health. 2020 Jun;4(6):e213-e214. (PMID: 32559435)
      PLoS One. 2016 Jan 19;11(1):e0145839. (PMID: 26784029)
      Clin Chem. 2009 Apr;55(4):611-22. (PMID: 19246619)
      Int J Environ Res Public Health. 2020 Aug 29;17(17):. (PMID: 32872524)
      J Expo Sci Environ Epidemiol. 2020 Jan;30(1):205-216. (PMID: 30728484)
      Int J Food Microbiol. 2020 Feb 16;315:108382. (PMID: 31710971)
      Curr Protoc Microbiol. 2008 Aug;Chapter 8:Unit 8A.1.1-8A.1.7. (PMID: 18729058)
      Prev Vet Med. 2017 Jul 1;142:7-15. (PMID: 28606367)
      Int J Environ Res Public Health. 2019 Nov 29;16(23):. (PMID: 31795463)
      Lett Appl Microbiol. 2013 Feb;56(2):88-94. (PMID: 23106632)
      J Expo Anal Environ Epidemiol. 1997 Oct-Dec;7(4):535-42. (PMID: 9306236)
      J Food Prot. 2004 Sep;67(9):1892-903. (PMID: 15453579)
      Environ Health Perspect. 2023 Nov;131(11):117007. (PMID: 37962439)
      Int J Food Microbiol. 2021 Jan 2;338:108984. (PMID: 33277046)
      Geospat Health. 2018 May 08;13(1):631. (PMID: 29772893)
      Emerg Infect Dis. 2020 Sep;26(9):2087-2096. (PMID: 32818393)
      J Food Prot. 2017 Oct;80(10):1726-1733. (PMID: 28922029)
      Environ Health Perspect. 2023 Nov;131(11):117004. (PMID: 37910131)
      Lett Appl Microbiol. 2010 Apr;50(4):366-72. (PMID: 20149084)
      Sci Rep. 2017 Feb 23;7:43354. (PMID: 28230180)
      J Food Prot. 2021 Jun 1;84(6):991-999. (PMID: 33428739)
      Am J Trop Med Hyg. 2022 Apr 11;:. (PMID: 35405653)
      J Clin Microbiol. 2014 Apr;52(4):1074-80. (PMID: 24452175)
      Int J Environ Res Public Health. 2015 Aug 27;12(9):10490-507. (PMID: 26343693)
      J Expo Sci Environ Epidemiol. 2006 May;16(3):287-98. (PMID: 16249797)
      Curr Environ Health Rep. 2015 Mar;2(1):69-74. (PMID: 26231243)
      Avian Dis. 2003;47(3 Suppl):1037-41. (PMID: 14575106)
      Infect Ecol Epidemiol. 2019 Mar 08;9(1):1579613. (PMID: 30891162)
      PLoS One. 2018 Oct 25;13(10):e0206316. (PMID: 30359449)
      Microbiome. 2018 Nov 26;6(1):210. (PMID: 30477563)
      Poult Sci. 2014 Nov;93(11):2893-9. (PMID: 25172928)
      PLoS One. 2019 Jun 6;14(6):e0216545. (PMID: 31170162)
      PLoS Negl Trop Dis. 2018 Aug 13;12(8):e0006658. (PMID: 30102697)
      Lancet Planet Health. 2021 Jun;5(6):e386-e394. (PMID: 34119013)
      Front Public Health. 2018 May 30;6:159. (PMID: 29900166)
      Int J Hyg Environ Health. 2019 Sep;222(8):1068-1076. (PMID: 31331788)
      J Environ Public Health. 2014;2014:701316. (PMID: 25258630)
      Poult Sci. 2007 Jun;86(6):1241-4. (PMID: 17495099)
      Springerplus. 2014 Mar 12;3:139. (PMID: 25674440)
      Foods. 2020 Jun 11;9(6):. (PMID: 32545362)
      Lancet Infect Dis. 2011 Feb;11(2):131-41. (PMID: 21272793)
      J Food Prot. 2013 Nov;76(11):1958-62. (PMID: 24215701)
      Foods. 2017 Nov 29;6(12):. (PMID: 29186018)
      Trends Microbiol. 2021 Jul;29(7):573-581. (PMID: 33712334)
      Vet World. 2017 Mar;10(3):286-292. (PMID: 28435190)
      PLoS Med. 2015 Dec 03;12(12):e1001923. (PMID: 26633896)
    • Grant Information:
      T32 AI138952 United States AI NIAID NIH HHS; T32 ES007032 United States ES NIEHS NIH HHS; T32 ES012870 United States ES NIEHS NIH HHS
    • Contributed Indexing:
      Keywords: C. jejuni/coli; Chicken processing; E. coli; Open air food markets; Salmonella spp.
    • Publication Date:
      Date Created: 20241112 Date Completed: 20241124 Latest Revision: 20241204
    • Publication Date:
      20241204
    • Accession Number:
      PMC11612030
    • Accession Number:
      10.1016/j.ijfoodmicro.2024.110960
    • Accession Number:
      39532025