Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
    • Publication Information:
      Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
    • Subject Terms:
    • Abstract:
      Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
      Competing Interests: AP, JH, JB, TR, XX, RK, DW, NL, LW, BE, RH, MG, RD, SF, KN, NK, SW, HH, TB No competing interests declared, CH Received personal fees from Sanofi outside the submitted work, JM Received consulting fees, honoraria, and travel support from Sanofi Pasteur and Sequris, SS The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne has a collaborative research and development agreement (CRADA) with CSL Seqirus for isolation of candidate vaccine viruses in cells and an agreement with IFPMA for isolation of candidate vaccine viruses in eggs. SGS reports honoraria from CSL Seqirus, Moderna, Pfizer, and Evo Health, IB, KS The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne has a collaborative research and development agreement (CRADA) with CSL Seqirus for isolation of candidate vaccine viruses in cells and an agreement with IFPMA for isolation of candidate vaccine viruses in eggs, FK The Icahn School of Medicine at Mount Sinai has filed patent applications relating to influenza virus vaccines (U.S. patent numbers: 12030928, 11865173, 11266734, 11254733, 10736956, 10583188, 10137189, 10131695, 9968670, 9371366; publication numbers: 20230181715, 20220403358, 20220249652, 20220242935, 20220153873, 20210260179, 20190125859, 20190106461, 20180333479), SARS-CoV-2 serological assays (publication number: 20240210415), and SARS-CoV-2 vaccines (publication numbers: 20230310583, 20230226171), which list FK as co-inventor. FK has consulted for Merck and Pfizer (before 2020), and is currently consulting for Pfizer, Seqirus, 3rd Rock Ventures, GSK and Avimex. The Krammer laboratory is also collaborating with Pfizer on animal models of SARS‐CoV‐2 and with Dynavax on universal influenza virus vaccines, CV Received honoraria for serving as an Editor in Chief of the journal Epidemics (Elsevier)
    • Comments:
      Update of: medRxiv. 2024 May 22:2023.10.02.23296453. doi: 10.1101/2023.10.02.23296453. (PMID: 37873362)
    • References:
      Elife. 2014 Nov 11;3:. (PMID: 25385532)
      Euro Surveill. 2015 Feb 26;20(8):. (PMID: 25742433)
      Nature. 2009 Jun 25;459(7250):1122-5. (PMID: 19516283)
      Elife. 2015 Aug 07;4:. (PMID: 26252514)
      Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2752-2757. (PMID: 29483256)
      PLoS Biol. 2010 Feb 23;8(2):e1000316. (PMID: 20186267)
      Nature. 2003 Mar 27;422(6930):428-33. (PMID: 12660783)
      Sci Rep. 2018 Jul 11;8(1):10432. (PMID: 29992986)
      J Infect Dis. 2009 Jan 15;199(2):168-79. (PMID: 19086914)
      Am J Prev Med. 2019 Oct;57(4):458-469. (PMID: 31473066)
      Nat Commun. 2019 Apr 10;10(1):1660. (PMID: 30971703)
      J Infect Dis. 2012 Jun 15;205(12):1858-68. (PMID: 22492921)
      Can Commun Dis Rep. 2005 Sep 15;31(18):181-91. (PMID: 16669132)
      J Infect Dis. 1985 Jan;151(1):81-8. (PMID: 3965596)
      Elife. 2018 Feb 27;7:. (PMID: 29485041)
      Sci Transl Med. 2013 Aug 14;5(198):198ra107. (PMID: 23946196)
      Br Med J. 1971 Aug 26;3(5773):531. (PMID: 5570648)
      MMWR Morb Mortal Wkly Rep. 2004 Aug 13;53(31):707-10. (PMID: 15306754)
      J Stat Softw. 2010;33(1):1-22. (PMID: 20808728)
      PLoS Pathog. 2018 Jan 11;14(1):e1006780. (PMID: 29324895)
      Am J Epidemiol. 2013 Nov 1;178(9):1478-87. (PMID: 24008912)
      Euro Surveill. 2017 Nov;22(44):. (PMID: 29113630)
      J Virol. 2013 Oct;87(20):11168-72. (PMID: 23926344)
      Sci Rep. 2015 Oct 16;5:15279. (PMID: 26472175)
      PLoS Comput Biol. 2019 Feb 27;15(2):e1006742. (PMID: 30811396)
      Theor Popul Biol. 2004 Mar;65(2):179-91. (PMID: 14766191)
      Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30547-30553. (PMID: 33168723)
      Microbes Infect. 2008 Jul;10(9):1024-9. (PMID: 18662798)
      Clin Infect Dis. 2012 Aug;55(3):332-42. (PMID: 22539661)
      Nucleic Acids Res. 2002 Jul 15;30(14):3059-66. (PMID: 12136088)
      Science. 2006 Apr 21;312(5772):447-51. (PMID: 16574822)
      Nature. 1982 Mar 11;296(5853):115-21. (PMID: 6174870)
      Proc Natl Acad Sci U S A. 1990 Jan;87(2):786-90. (PMID: 2300562)
      Elife. 2019 Aug 27;8:. (PMID: 31452511)
      Euro Surveill. 2021 Jul;26(29):. (PMID: 34296675)
      PLoS Pathog. 2010 May 27;6(5):e1000918. (PMID: 20523898)
      PLoS Comput Biol. 2010 Aug 12;6(8):. (PMID: 20711361)
      Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6283-8. (PMID: 17395716)
      Elife. 2013 May 14;2:e00631. (PMID: 23682315)
      Virus Evol. 2018 Jan 08;4(1):vex042. (PMID: 29340210)
      Clin Infect Dis. 2012 Oct;55(7):951-9. (PMID: 22843783)
      J Infect Dis. 2021 Nov 16;224(9):1500-1508. (PMID: 34551108)
      Lancet Glob Health. 2022 Nov;10(11):e1612-e1622. (PMID: 36240828)
      BMC Bioinformatics. 2020 Jul 14;21(1):307. (PMID: 32664864)
      Virol J. 2013 Jul 26;10:244. (PMID: 23886073)
      Nat Rev Genet. 2007 Mar;8(3):196-205. (PMID: 17262054)
      Lancet Public Health. 2020 May;5(5):e279-e288. (PMID: 32311320)
      Am J Epidemiol. 2012 Oct 1;176(7):649-55. (PMID: 22962250)
      Clin Infect Dis. 2010 Dec 15;51(12):1370-9. (PMID: 21067351)
      JAMA Netw Open. 2022 Feb 01;5(2):e220527. (PMID: 35226079)
      Science. 2006 Dec 22;314(5807):1898-903. (PMID: 17185596)
      PLoS Pathog. 2019 Dec 19;15(12):e1008109. (PMID: 31856206)
      Science. 2004 Jul 16;305(5682):371-6. (PMID: 15218094)
      J Infect Dis. 2015 Oct 15;212(8):1191-9. (PMID: 25858957)
      Vaccine. 2003 May 1;21(16):1776-9. (PMID: 12686093)
      Vaccine. 2009 Apr 21;27(18):2447-52. (PMID: 19368786)
      . 2021;6(57):. (PMID: 34189396)
      Vaccine. 2017 May 15;35(21):2831-2839. (PMID: 28412077)
      Vaccine. 1993;11(10):1037-9. (PMID: 8212824)
      Euro Surveill. 2017 Feb 9;22(6):. (PMID: 28205503)
      Elife. 2020 Sep 02;9:. (PMID: 32876050)
      Nature. 2014 Mar 6;507(7490):57-61. (PMID: 24572367)
      Science. 2013 Nov 22;342(6161):976-9. (PMID: 24264991)
      Nature. 1981 Jan 29;289(5796):373-8. (PMID: 6162101)
      J Virol. 1968 Aug;2(8):778-86. (PMID: 5701819)
      JAMA. 2000 Oct 4;284(13):1655-63. (PMID: 11015795)
      BMC Bioinformatics. 2008 Jul 11;9:307. (PMID: 18620558)
      J Immunol. 2019 Jan 15;202(2):335-340. (PMID: 30617114)
      J Infect Dis. 1976 Oct;134(4):384-94. (PMID: 789791)
      Biol Direct. 2006 Oct 26;1:34. (PMID: 17067369)
      Proc Natl Acad Sci U S A. 1969 Jun;63(2):326-33. (PMID: 5257124)
      N Engl J Med. 1972 Jun 22;286(25):1329-32. (PMID: 5027388)
      Science. 2018 Oct 5;362(6410):75-79. (PMID: 30287659)
      mBio. 2018 Apr 3;9(2):. (PMID: 29615508)
      Science. 1999 Dec 3;286(5446):1921-5. (PMID: 10583948)
      MMWR Morb Mortal Wkly Rep. 2021 Jul 23;70(29):1013-1019. (PMID: 34292924)
      PLoS Comput Biol. 2020 Jun 15;16(6):e1007989. (PMID: 32542015)
      Influenza Other Respir Viruses. 2018 May;12(3):336-343. (PMID: 29350791)
      Elife. 2014;3:e01914. (PMID: 24497547)
      PLoS Comput Biol. 2017 Oct 19;13(10):e1005749. (PMID: 29049288)
      Emerg Infect Dis. 2004 Jan;10(1):32-9. (PMID: 15078594)
      J Infect Dis. 2014 Aug 15;210(4):535-44. (PMID: 24731959)
      J Infect Dis. 2022 Apr 19;225(8):1387-1398. (PMID: 32215564)
      PLoS Comput Biol. 2020 Dec 10;16(12):e1008409. (PMID: 33301457)
      Science. 2009 Jul 10;325(5937):197-201. (PMID: 19465683)
      Clin Infect Dis. 2019 May 17;68(11):1798-1806. (PMID: 30204854)
      Nature. 2001 Dec 13;414(6865):716-23. (PMID: 11742391)
      Euro Surveill. 2013 Jan 31;18(5):. (PMID: 23399425)
      Gene. 2008 Dec 31;427(1-2):111-6. (PMID: 18848975)
      Bioinformatics. 2018 Dec 1;34(23):4121-4123. (PMID: 29790939)
      Euro Surveill. 2017 Mar 30;22(13):. (PMID: 28382917)
      Nat Med. 2013 Oct;19(10):1305-12. (PMID: 24056771)
      Vaccine. 2007 Apr 12;25(15):2842-51. (PMID: 17081662)
      Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9538-42. (PMID: 24979763)
      BMC Infect Dis. 2014 Sep 04;14:480. (PMID: 25186370)
      BMC Biol. 2012 Apr 30;10:38. (PMID: 22546494)
      PLoS Med. 2009 Nov;6(11):e1000168. (PMID: 19918363)
      J Infect Dis. 2015 Dec 1;212(11):1701-10. (PMID: 25943206)
      mBio. 2016 Jan 19;7(1):e01996-15. (PMID: 26787832)
      Vaccine. 1999 Jul 30;17 Suppl 1:S3-10. (PMID: 10471173)
      J Infect Dis. 1974 Apr;129(4):411-20. (PMID: 4593871)
      J Infect Dis. 2013 Mar 15;207(6):974-81. (PMID: 23307936)
      J Infect Dis. 2016 Oct 1;214(7):1010-9. (PMID: 27190176)
      Epidemiology. 2009 May;20(3):344-7. (PMID: 19279492)
      Stat Med. 2003 Oct 15;22(19):3055-71. (PMID: 12973787)
      PLoS Genet. 2011 Feb;7(2):e1001301. (PMID: 21390205)
      Curr Opin Immunol. 2018 Aug;53:38-44. (PMID: 29674167)
      Front Immunol. 2016 May 19;7:195. (PMID: 27242800)
      J Infect Dis. 2017 Apr 1;215(7):1059-1099. (PMID: 28180277)
      Biostatistics. 2006 Jul;7(3):355-73. (PMID: 16344280)
      Philos Trans R Soc Lond B Biol Sci. 2001 Dec 29;356(1416):1861-70. (PMID: 11779385)
      Cell. 2018 Apr 5;173(2):417-429.e10. (PMID: 29625056)
      Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12578-12583. (PMID: 29109276)
      Infect Control Hosp Epidemiol. 2003 Nov;24(11):839-44. (PMID: 14649772)
      Nat Commun. 2020 Jun 2;11(1):2741. (PMID: 32488106)
      Sci Rep. 2022 May 25;12(1):8883. (PMID: 35614123)
      Annu Rev Immunol. 1990;8:737-71. (PMID: 2188678)
      Mol Biol Evol. 2015 Jan;32(1):268-74. (PMID: 25371430)
      Clin Infect Dis. 2014 Feb;58(3):319-27. (PMID: 24235265)
      BMC Bioinformatics. 2007 Jan 25;8:25. (PMID: 17254353)
      mBio. 2016 Apr 19;7(2):e00417-16. (PMID: 27094330)
      Virology. 2005 Sep 1;339(2):273-80. (PMID: 15996702)
      Clin Infect Dis. 2019 Nov 13;69(11):1845-1853. (PMID: 30715278)
      Nat Commun. 2022 Mar 4;13(1):1190. (PMID: 35246548)
      Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8. (PMID: 19204283)
      Elife. 2015 Sep 15;4:e07361. (PMID: 26371556)
      Clin Infect Dis. 2014 Nov 15;59(10):1375-85. (PMID: 25270645)
      Nature. 2015 Jul 9;523(7559):217-20. (PMID: 26053121)
      Med J Aust. 1977 Dec 3;2(23):761-5. (PMID: 611373)
      PLoS Comput Biol. 2017 Feb 10;13(2):e1005382. (PMID: 28187123)
      Elife. 2019 Sep 18;8:. (PMID: 31532393)
      Epidemics. 2009 Jun;1(2):129-37. (PMID: 21352760)
      Int J Environ Res Public Health. 2021 May 17;18(10):. (PMID: 34067932)
      Microbiol Rev. 1992 Mar;56(1):152-79. (PMID: 1579108)
      J Infect Dis. 2012 Sep 1;206(5):625-7. (PMID: 22723644)
      Influenza Other Respir Viruses. 2018 Sep;12(5):567-581. (PMID: 29659149)
      PLoS One. 2014 Mar 25;9(3):e92153. (PMID: 24667168)
      Nature. 2005 Sep 8;437(7056):209-14. (PMID: 16079797)
      Curr Opin Virol. 2014 Oct;8:85-9. (PMID: 25108824)
      J Virol. 2013 Apr;87(8):4728-37. (PMID: 23408625)
      Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20748-53. (PMID: 22143798)
      Virology. 1980 Jul 15;104(1):139-48. (PMID: 6156537)
      J Stat Softw. 2017;76:. (PMID: 36568334)
      Vaccine. 2011 Sep 2;29(38):6558-63. (PMID: 21767593)
      Nat Commun. 2022 Mar 31;13(1):1721. (PMID: 35361789)
      Mol Biol Evol. 2011 Sep;28(9):2443-51. (PMID: 21415025)
      J Infect Dis. 2020 Jan 1;221(1):8-15. (PMID: 31665373)
      J Infect Dis. 2006 Jan 1;193(1):49-53. (PMID: 16323131)
      Sci Transl Med. 2017 Oct 25;9(413):. (PMID: 29070700)
      J Infect Dis. 2014 Jul 1;210(1):126-37. (PMID: 24446529)
      Nat Rev Immunol. 2019 Jun;19(6):383-397. (PMID: 30837674)
      Clin Infect Dis. 2016 Dec 15;63(12):1564-1573. (PMID: 27702768)
      MMWR Recomm Rep. 2009 Jul 31;58(RR-8):1-52. (PMID: 19644442)
      Clin Infect Dis. 2016 Jul 1;63(1):21-32. (PMID: 27025838)
      BMC Evol Biol. 2011 Jul 25;11:220. (PMID: 21787390)
      Vaccine. 2003 Nov 7;21(31):4507-13. (PMID: 14575760)
      mBio. 2015 Mar 10;6(2):e02556. (PMID: 25759506)
      Vaccine. 2016 Mar 8;34(11):1350-7. (PMID: 26854911)
      Curr Opin Virol. 2017 Feb;22:105-111. (PMID: 28088686)
      Clin Infect Dis. 2014 Aug 15;59(4):517-24. (PMID: 24825868)
      J Exp Med. 2013 Jul 29;210(8):1493-500. (PMID: 23857983)
      PLoS Curr. 2010 Dec 03;2:RRN1200. (PMID: 21152078)
      Nat Rev Microbiol. 2018 Jan;16(1):60. (PMID: 29109554)
      Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1701-9. (PMID: 26951657)
      N Engl J Med. 2017 Aug 10;377(6):534-543. (PMID: 28792867)
      J Clin Microbiol. 1993 Apr;31(4):836-8. (PMID: 8463393)
      Cell Host Microbe. 2019 Mar 13;25(3):357-366.e6. (PMID: 30795982)
      PLoS Med. 2010 Apr 06;7(4):e1000258. (PMID: 20386731)
      J Virol. 1998 Jul;72(7):5648-53. (PMID: 9621023)
      PLoS Comput Biol. 2018 Mar 7;14(3):e1006020. (PMID: 29513661)
      Sci Rep. 2015 Jun 05;5:11013. (PMID: 26046930)
      Am J Epidemiol. 2006 Feb 15;163(4):316-26. (PMID: 16394205)
      Am J Epidemiol. 2013 Nov 1;178(9):1505-12. (PMID: 24043437)
      Nat Commun. 2021 Feb 12;12(1):1001. (PMID: 33579926)
      J Infect Dis. 2016 May 15;213(10):1546-56. (PMID: 26743842)
      Bioinformatics. 2010 May 15;26(10):1340-7. (PMID: 20385727)
      Am J Transplant. 2020 Dec;20(12):3681-3685. (PMID: 33264506)
      PLoS Med. 2011 Jul;8(7):e1001051. (PMID: 21750666)
      Lancet Infect Dis. 2009 May;9(5):291-300. (PMID: 19393959)
    • Grant Information:
      10111800 Ministry of Health, Labour and Welfare; 75N93019C00051 United States NH NIH HHS; FC001030 United Kingdom ARC_ Arthritis Research UK; 10110400 Ministry of Health, Labour and Welfare; JP22fk0108118 Japan Agency for Medical Research and Development; HHSN272201400008C United States NH NIH HHS; F31 AI140714 United States NH NIH HHS; 75N93021C00014 United States AI NIAID NIH HHS; United Kingdom WT_ Wellcome Trust; 75N93019C00051 United States AI NIAID NIH HHS; 75N93021C00014 United States NH NIH HHS; R01 AI165821 United States AI NIAID NIH HHS; R01 AI165821 United States NH NIH HHS; HHSN272201400008C United States AI NIAID NIH HHS; F31 AI140714 United States AI NIAID NIH HHS; 1354890 National Science Foundation; R35 GM119774 United States GM NIGMS NIH HHS; FC001030 United Kingdom WT_ Wellcome Trust; R35 GM119774 United States NH NIH HHS; R01 AI127893 United States NH NIH HHS; FC001030 United Kingdom MRC_ Medical Research Council; JP23fk0108662 Japan Agency for Medical Research and Development; FC001030 United Kingdom CRUK_ Cancer Research UK; R01 AI127893 United States AI NIAID NIH HHS
    • Contributed Indexing:
      Keywords: H3N2; antigenic drift; epidemiology; global health; human; infectious disease; influenza virus; microbiology; virus
      Local Abstract: [plain-language-summary] Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in young children, older adults and people with chronic medical conditions. Infected or vaccinated individuals develop some immunity, but the viruses evolve quickly to evade these defenses in a process called antigenic drift. As the viruses change, they can re-infect previously immune people. Scientists update the flu vaccine yearly to keep up with this antigenic drift. The immune system fights flu infections by recognizing two proteins, known as antigens, on the virus’s surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. Scientists would like to know how these changes affect the size, severity and timing of annual influenza outbreaks. Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak severity than the blood tests for protective antibodies that epidemiologists traditionally use to track flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be. Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, and flu vaccines include the HA protein to help the body recognize new influenza strains. The results suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predictions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the severity of A(H3N2) outbreaks.
    • Accession Number:
      0 (Hemagglutinin Glycoproteins, Influenza Virus)
      EC 3.2.1.18 (Neuraminidase)
      0 (Antigens, Viral)
    • Publication Date:
      Date Created: 20240925 Date Completed: 20240925 Latest Revision: 20240927
    • Publication Date:
      20240927
    • Accession Number:
      PMC11424097
    • Accession Number:
      10.7554/eLife.91849
    • Accession Number:
      39319780