Menu
×
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Reduction in mitochondrial ATP synthesis mimics the effect of low glucose in depolarizing neurons from the subpostremal nucleus of the solitary tract of rats.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zarpellon PS;Zarpellon PS; Murat C; Murat C; Murat C; Leão RM; Leão RM
- Source:
Journal of bioenergetics and biomembranes [J Bioenerg Biomembr] 2024 Oct; Vol. 56 (5), pp. 483-493. Date of Electronic Publication: 2024 Sep 13.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: United States NLM ID: 7701859 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6881 (Electronic) Linking ISSN: 0145479X NLM ISO Abbreviation: J Bioenerg Biomembr Subsets: MEDLINE
- Publication Information: Publication: 1999- : New York, NY : Springer
Original Publication: New York, Plenum Press. - Subject Terms: Glucose*/metabolism ; Glucose*/pharmacology ; Adenosine Triphosphate*/metabolism ; Adenosine Triphosphate*/biosynthesis ; Neurons*/metabolism ; Neurons*/drug effects ; Solitary Nucleus*/metabolism ; Solitary Nucleus*/drug effects ; Mitochondria*/metabolism ; Mitochondria*/drug effects; Animals ; Rats ; Male ; Membrane Potentials/drug effects
- Abstract: Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Accorsi-Mendonc¸a D, Castania JA, Bonagamba LG, Machado BH, Leao RM (2011) Synaptic profile of nucleus tractus solitarius neurons involved with the peripheral chemoreflex pathways. Neuroscience 197:107–120. (PMID: 10.1016/j.neuroscience.2011.08.05421963868)
Andersen MN, Rasmussen HB (2012) AMPK: a regulator of ion channels. Commun Integr Biol 5(5):480–484. (PMID: 10.4161/cib.21200231811653502212)
Andrew SF, Dinh TT, Ritter S (2007) Localized glucoprivation of hindbrain sites elicits corticosterone and glucagon secretion. Am J Physiol Regul Integr Comp Physiol 292:R1792–1798. (PMID: 10.1152/ajpregu.00777.200617218439)
Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408(3):297–315. https://doi.org/10.1042/BJ20070797. (PMID: 10.1042/BJ20070797178502142267365)
Balfour RH, Trapp S (2007) Ionic currents underlying the response of rat dorsal vagal neurones to hypoglycaemia and chemical anoxia. J Physiol 579(3):691–702. (PMID: 10.1113/jphysiol.2006.126094172183562151378)
Balfour RH, Hansen AMK, Trapp S (2006) Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. J Physiol 570(3):469–484. (PMID: 10.1113/jphysiol.2005.09882216284073)
Bohland M, Matveyenko AV, Saberi M, Khan AM, Watts AG, Donovan CM (2014) Activation of hindbrain neurons is mediated by portal-mesenteric vein glucosensors during slow-onset hypoglycemia. Diabetes 63:2866–2875. (PMID: 10.2337/db13-1600247274354113064)
Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-Aminoimidazole‐4‐Carboxamide Ribonucleoside: a specific method for activating AMP‐Activated protein kinase in Intact cells? European. J Biochem 229:558–565. https://doi.org/10.1111/j.1432-1033.1995.tb20498.x. (PMID: 10.1111/j.1432-1033.1995.tb20498.x)
Dagostin AA, Lovell PV, Hilscher MM, Mello CV, Leão RM (2015) Control of phasic firing by a background leak current in avian forebrain auditory neurons. Front Cell Neurosci 9:471. (PMID: 10.3389/fncel.2015.00471266968304674572)
Dallaporta M, Perrin J, Orsini JC (2000) Involvement of adenosine triphosphate-sensitive K + channels in glucose-sensing in the rat solitary tract nucleus. Neurosci Lett 278(1–2):77–80. (PMID: 10.1016/S0304-3940(99)00898-810643805)
De Bernardis Murat, C., Leão RM (2019) A voltage-dependent depolarization induced by low external glucose in neurons of the nucleus of the tractus solitarius: interaction with KATP channels. J Physiol 597(9):2515–2532. (PMID: 10.1113/JP277729309274606487940)
de Siqueira DVF, Strazza PS Jr, Benites NM, Leão RM (2022) Salicylate activates KATP channels and reduces spontaneous firing in glycinergic cartwheel neurons in the dorsal cochlear nucleus of rats. Eur J Pharmacol 926:175026. https://doi.org/10.1016/j.ejphar.2022.175026. (PMID: 10.1016/j.ejphar.2022.17502635569546)
Donovan CM, Watts AG (2014) Peripheral and central glucose sensing in hypoglycemic detection. Physiol (Bethesda) 29:314–324.
Fan Z, Tokuyama Y, Makielski JC (1994) Modulation of ATP-sensitive K + channels by internal acidification in insulin-secreting cells. Am J Physiol 267(4 Pt 1):C1036–C1044. https://doi.org/10.1152/ajpcell.1994.267.4.C1036. (PMID: 10.1152/ajpcell.1994.267.4.C10367943266)
Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K + channel. EMBO J 15(24):6854–6862. (PMID: 10.1002/j.1460-2075.1996.tb01077.x9003761452511)
Gao L, Ortega-Sáenz P, García-Fernández M, González-Rodríguez P, Caballero-Eraso C, López-Barneo J (2014) Glucose sensing by carotid body glomus cells: potential implications in disease. Front Physiol 5:398. (PMID: 10.3389/fphys.2014.00398253601174197775)
Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800. (PMID: 10.1016/j.molcel.2017.05.032286225245553560)
Glitsch HG (2001) Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiological Reviews. 81(4):1791 – 826. https://doi.org/10.1152/physrev.2001.81.4.1791 . PMID: 11581502.
Gross PM (1991) Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema. Can J Physiol Pharmacol. Jul;69(7):1010-25. doi: 10.1139/y91-152.
Gulledge AT, Dasari S, Onoue K, Stephens EK, Hasse JM, Avesar D (2013) A sodium-pump-mediated afterhyperpolarization in pyramidal neurons. J Neurosci 33(32):13025–13041. https://doi.org/10.1523/JNEUROSCI.0220-13.2013. (PMID: 10.1523/JNEUROSCI.0220-13.2013239262573735883)
Hermann GE, Viard E, Rogers RC (2014) Hindbrain glucoprivation effects on gastric vagal reflex circuits and gastric motility in the rat are suppressed by the astrocyte inhibitor fluorocitrate. J Neurosci 34:10488–10496. (PMID: 10.1523/JNEUROSCI.1406-14.2014251005844122796)
Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. (PMID: 10.1038/nrm.2017.9528974774)
Kasianowicz J, Benz R, McLaughlin S (1984) The kinetic mechanism by which CCCP (carbonyl cyanidem-Chlorophenylhydrazone) transports protons across membranes. J Membr Biol 82(2):179–190. (PMID: 10.1007/BF018689426096547)
Lam CK, Chari M, Su BB, Cheung GW, Kokorovic A, Yang CS, Wang PY, Lai TY, Lam TK (2010) Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J Biol Chem 285:21913–21921. (PMID: 10.1074/jbc.M109.087338204480422903398)
Lamy CM, Sanno H, Labouèbe G, Picard A, Magnan C, Chatton JY, Thorens B (2014) Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metabol 19(3):527–538. (PMID: 10.1016/j.cmet.2014.02.003)
Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274(38):26691–26696. https://doi.org/10.1074/jbc.274.38.26691. (PMID: 10.1074/jbc.274.38.2669110480871)
Mandal SK, Briski KP (2019) Hindbrain dorsal vagal complex AMPK controls hypothalamic gluco-regulatory transmitter and counter-regulatory hormone responses to hypoglycemia. Brain Res Bull 144:171–179. (PMID: 10.1016/j.brainresbull.2018.11.01630481553)
Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiol (Bethesda) 22:241–251.
Mimee A, Ferguson AV (2015) Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 308:R690–R699. (PMID: 10.1152/ajpregu.00477.2014256952914398857)
Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131. (PMID: 10.1016/0076-6879(92)07008-C1528115)
Plášek J, Babuka D, Hoefer M (2017) H + translocation by weak acid uncouplers is independent of H + electrochemcal gradient. J Bioenerg Biomembr 49:391–397. https://doi.org/10.1007/s10863-017-9724-x. (PMID: 10.1007/s10863-017-9724-x28900787)
Ritter S, Dinh TT, Zhang Y (2000) Localization of hindbrain glucoreceptive sites controlling food intake and blood glucose. Brain Res 856:37–47. (PMID: 10.1016/S0006-8993(99)02327-610677609)
Verberne AJ, Sabetghadam A, Korim WS (2014) Neural pathways that control the glucose counterregulatory response. Front NeuroSci 8:38. (PMID: 10.3389/fnins.2014.00038246166593935387)
Vogt J, Traynor R, Sapkota GP (2011) The specificities of small molecule inhibitors of the TGFss and BMP pathways. Cell Signal 23(11):1831–1831. (PMID: 10.1016/j.cellsig.2011.06.01921740966)
Yellen G (2018) Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217:2235–2246. https://doi.org/10.1083/jcb.201803152. (PMID: 10.1083/jcb.201803152297523966028533)
Yettefti K, Orsini JC, Perrin J (1997) Characteristics of glycemia-sensitive neurons in the nucleus tractus solitarii: possible involvement in nutritional regulation. Physiol Behav 61(1):93–100. (PMID: 10.1016/S0031-9384(96)00358-78976538)
Zhao S, Kanoski SE, Yan J, Grill HJ, Hayes MR (2012) Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner. Int J Obes (Lond) 36:1522–1528. (PMID: 10.1038/ijo.2011.26522249232) - Grant Information: 2022/14196-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
- Contributed Indexing: Keywords: ATP; Glycemia; Mitochondria; NTS
- Accession Number: IY9XDZ35W2 (Glucose)
8L70Q75FXE (Adenosine Triphosphate) - Publication Date: Date Created: 20240912 Date Completed: 20241005 Latest Revision: 20241005
- Publication Date: 20241006
- Accession Number: 10.1007/s10863-024-10037-8
- Accession Number: 39266925
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.