Ambient air pollution and survival in childhood cancer: A nationwide survival analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 0374236 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0142 (Electronic) Linking ISSN: 0008543X NLM ISO Abbreviation: Cancer Subsets: MEDLINE
    • Publication Information:
      Publication: <2005- >: Hoboken, NJ : Wiley
      Original Publication: New York [etc.] Published for the American Cancer Society by J. Wiley [etc.]
    • Subject Terms:
    • Abstract:
      Background: Particulate matter consisting of fine particles measuring 2.5 microns or less in diameter (PM 2.5 ), a component of air pollution, has been linked to adverse health outcomes. The objective of this study was to assess the association between ambient PM 2.5 exposure and survival in children with cancer in the United States.
      Methods: Individuals aged birth to 19 years who were diagnosed with cancer between January 1, 2004, and December 31, 2019, were selected from the National Cancer Database. The association between the annual PM 2.5 level at the patient's zip code of residence at the time of diagnosis and overall survival was evaluated using time-varying Cox proportional hazards models (crude and adjusted for diagnosis year and age). To address concerns that exposure to air pollution is correlated with other social determinants of health, the authors tested the association between PM 2.5 levels and survival among sociodemographic subgroups.
      Results: Of the 172,550 patients included, 27,456 (15.9%) resided in areas with annual PM 2.5 concentrations above the US Environmental Protection Agency (EPA) annual PM 2.5 standard of 12 μg/m 3 . Residing in these high-pollution areas was associated with worse overall survival (adjusted hazard ratio [aHR], 1.06; 95% confidence interval [CI], 1.012-1.10). Similarly, when PM 2.5 was evaluated as a linear measure, each unit increase in PM 2.5 exposure was associated with worse survival (aHR, 1.011; CI, 1.005-1.017). Exposure to PM 2.5 at levels above the EPA standards was also significantly associated with worse overall survival among sociodemographic subgroups.
      Conclusions: Exposure to PM 2.5 was significantly associated with worse overall survival among children with cancer, even at levels below EPA air quality standards. These results underscore the importance of setting appropriate air quality standards to protect the health of this sensitive population.
      Plain Language Summary: The authors investigated how living in areas with high air pollution (defined as particulate matter consisting of fine particles measuring 2.5 microns or less in diameter; PM 2.5 ) affects the overall survival of children with cancer in the United States. The results indicated that children living in areas with higher PM 2.5 levels, and even at levels below prior and current US Environmental Protection Agency standards, had lower survival rates than children living in areas with lower levels of PM 2.5 . This finding emphasizes the need for stricter air quality standards to better protect children, particularly those with serious health conditions like childhood cancer.
      (© 2024 American Cancer Society.)
    • References:
      Siegel DA, Richardson LC, Henley SJ, et al. Pediatric cancer mortality and survival in the United States, 20012016. Cancer. 2020;126(19):4379‐4389. doi:10.1002/cncr.33080.
      Cunningham RM, Walton MA, Carter PM. The major causes of death in children and adolescents in the United States. N Engl J Med. 2018;379(25):2468‐2475. doi:10.1056/NEJMsr1804754.
      Perera F, Nadeau K. Climate change, fossil‐fuel pollution, and children’s health. N Engl J Med. 2022;386(24):2303‐2314. doi:10.1056/NEJMra2117706.
      United States Environmental Protection Agency (EPA). Process of Reviewing the National Ambient Air Quality Standards. EPA; 2022. Accessed September 13, 2023. https://www.epa.gov/criteria‐air‐pollutants/process‐reviewing‐national‐ambient‐air‐quality‐standards.
      Schlesinger RB. The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review. Inhal Toxicol. 2007;19(10):811‐832. doi:10.1080/08958370701402382.
      Eckel SP, Cockburn M, Shu YH, et al. Air pollution affects lung cancer survival. Thorax. 2016;71(10):891‐898. doi:10.1136/thoraxjnl‐2015‐207927.
      Villanueva C, Chang J, Ziogas A, Bristow RE, Vieira VM. Ambient air pollution and ovarian cancer survival in California. Gynecol Oncol. 2021;163(1):155‐161. doi:10.1016/j.ygyno.2021.07.036.
      Cheng I, Yang J, Tseng C, et al. Outdoor ambient air pollution and breast cancer survival among California participants of the Multiethnic Cohort Study. Environ Int. 2022;161:107088. doi:10.1016/j.envint.2022.107088.
      Coleman NC, Ezzati M, Marshall JD, Robinson AL, Burnett RT, Pope CA 3rd. Fine particulate matter air pollution and mortality risk among US cancer patients and survivors. JNCI Cancer Spectr. 2021;5(1):pkab001. doi:10.1093/jncics/pkab001.
      United States Environmental Protection Agency (EPA). National Ambient Air Quality Standards (NAAQS) for PM—2024. EPA; 2024. Accessed May 10, 2024. https://www.epa.gov/pm‐pollution/national‐ambient‐air‐quality‐standards‐naaqs‐pm.
      Ou JY, Hanson HA, Ramsay JM, et al. Fine particulate matter air pollution and mortality among pediatric, adolescent, and young adult cancer patients. Cancer Epidemiol Biomarkers Prev. 2020;29(10):1929‐1939. doi:10.1158/1055‐9965.EPI‐19‐1363.
      Cabrera‐Rivera LT, Sweetser B, Fuster‐Soler JL, et al. Looking towards 2030: strengthening the environmental health in childhood–adolescent cancer survivor programs. Int J Environ Res Public Health. 2023;20(1):443. doi:10.3390/ijerph20010443.
      Mallin K, Browner A, Palis B, et al. Incident cases captured in the National Cancer Database compared with those in U.S. population based central cancer registries in 2012–2014. Ann Surg Oncol. 2019;26(6):1604‐1612. doi:10.1245/s10434‐019‐07213‐1.
      Di Q, Wei Y, Shtein A, et al. Air Quality Data for Health‐Related Applications: Daily and Annual PM2.5 Concentrations for the Contiguous United States, 1‐km Grids, v1.10 (2000–2016). US National Aeronautics and Space Administration Socioeconomic Data and Applications Center (SEDAC); 2021. Accessed September 13, 2023. https://sedac.ciesin.columbia.edu/data/set/aqdh‐pm2‐5‐concentrations‐contiguous‐us‐1‐km‐v1‐10‐2000‐2016/docs.
      Carrasco‐Escobar G, Schwalb A, Tello‐Lizarraga K, Vega‐Guerovich P, Ugarte‐Gil C. Spatio‐temporal co‐occurrence of hotspots of tuberculosis, poverty and air pollution in Lima, Peru. Infect Dis Poverty. 2020;9(1):32. doi:10.1186/s40249‐020‐00647‐w.
      George PE, Maillis A, Zhu Y, et al. Are children with sickle cell disease at particular risk from the harmful effects of air pollution? Evidence from a large, urban/peri‐urban cohort. Pediatr Blood Cancer. 2023;70(9):e30453. doi:10.1002/pbc.30453.
      United States Environmental Protection Agency (EPA). National Ambient Air Quality Standards (NAAQS) for PM. EPA; 2020. Accessed August 10, 2023. https://www.epa.gov/pm‐pollution/national‐ambient‐air‐quality‐standards‐naaqs‐pm.
      World Health Organization (WHO). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO; 2021.
      Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis‐Oudshoorn CGM. Time‐varying covariates and coefficients in Cox regression models. Ann Transl Med. 2018;6(7):121. doi:10.21037/atm.2018.02.12.
      United States Census Bureau. American Community Survey Public Use Samples. Accessed March 1, 2023. https://www.census.gov/programs‐surveys/acs.
      Boyd RW, Lindo EG, Weeks LD, McLemore MR. On Racism: A New Standard for Publishing on Racial Health Inequities. Health Affairs Forefront. Published online July 2, 2020. doi:10.1377/forefront.20200630.939347.
      von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495‐1499. doi:10.1016/j.ijsu.2014.07.013.
      Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14. 10.3389/fpubh.2020.00014.
      Ramamoorthy T, Nath A, Singh S, et al. Assessing the global impact of ambient air pollution on cancer incidence and mortality: a comprehensive meta‐analysis. JCO Glob Oncol. 2024(10):e2300427. doi:10.1200/GO.23.00427.
      Guo Q, Wang X, Gao Y, et al. Relationship between particulate matter exposure and female breast cancer incidence and mortality: a systematic review and meta‐analysis. Int Arch Occup Environ Health. 2021;94(2):191‐201. doi:10.1007/s00420‐020‐01573‐y.
      Huang F, Pan B, Wu J, Chen E, Chen L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: a meta‐analysis. Oncotarget. 2017;8(26):43322‐43331. doi:10.18632/oncotarget.17313.
      Rückerl R, Hampel R, Breitner S, et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int. 2014;70:32‐49. doi:10.1016/j.envint.2014.05.013.
      Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int J Mol Sci. 2020;21(12):4306. doi:10.3390/ijms21124306.
      Calderón‐Garcidueñas L, Villarreal‐Calderon R, Valencia‐Salazar G, et al. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhal Toxicol. 2008;20(5):499‐506. doi:10.1080/08958370701864797.
      DeNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008;27(1):11‐18. doi:10.1007/s10555‐007‐9100‐0.
      Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev. 2010;20(1):65‐71. doi:10.1016/j.gde.2009.11.004.
      Karin M. Nuclear factor‐κB in cancer development and progression. Nature. 2006;441(7092):431‐436. doi:10.1038/nature04870.
      Hayes JD, Dinkova‐Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167‐197. doi:10.1016/j.ccell.2020.06.001.
      Brouwer CA, Postma A, Hooimeijer HLH, et al. Endothelial damage in long‐term survivors of childhood cancer. J Clin Oncol. 2013;31(31):3906‐3913. doi:10.1200/jco.2012.46.6086.
      Goon PKY, Lip GYH, Boos CJ, Stonelake PS, Blann AD. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia. 2006;8(2):79‐88. doi:10.1593/neo.05592.
      Orr FW, Adamson IYR, Warner D, et al. The effects of oxygen radical–mediated pulmonary endothelial damage on cancer metastasis. Mol Cell Biochem. 1988;84(2):189‐198. doi:10.1007/BF00421054.
      Terwoord JD, Beyer AM, Gutterman DD. Endothelial dysfunction as a complication of anti‐cancer therapy. Pharmacol Ther. 2022;237:108116. doi:10.1016/j.pharmthera.2022.108116.
      United States Environmental Protection Agency (EPA). Summary of the Clean Air Act. 42 U.S.C. §7401 et seq. (1970). EPA; 2023. Accessed February 26, 2023. https://www.epa.gov/laws‐regulations/summary‐clean‐air‐act.
      Woo B, Kravitz‐Wirtz N, Sass V, Crowder K, Teixeira S, Takeuchi DT. Residential segregation and racial/ethnic disparities in ambient air pollution. Race Soc Probl. 2019;11(1):60‐67. doi:10.1007/s12552‐018‐9254‐0.
      Braveman P, Egerter S, Williams DR. The social determinants of health: coming of age. Annu Rev Public Health. 2011;32(1):381‐398. doi:10.1146/annurev‐publhealth‐031210‐101218.
      Zhao J, Han X, Zheng Z, et al. Racial/ethnic disparities in childhood cancer survival in the United States. Cancer Epidemiol Biomarkers Prev. 2021;30(11):2010‐2017. doi:10.1158/1055‐9965.EPI‐21‐0117.
    • Contributed Indexing:
      Keywords: air pollution; cancer, fine particles ≤2.5 microns in diameter (PM2.5); pediatric; survival
    • Accession Number:
      0 (Particulate Matter)
    • Publication Date:
      Date Created: 20240806 Date Completed: 20241025 Latest Revision: 20241025
    • Publication Date:
      20241025
    • Accession Number:
      10.1002/cncr.35484
    • Accession Number:
      39106101