Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×

Resting membrane potential and intracellular [Na + ] at rest, during fatigue and during recovery in rat soleus muscle fibres in situ.
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Lindinger MI;Lindinger MI; Cairns SP; Cairns SP; Cairns SP; Sejersted OM; Sejersted OM
- Source:
The Journal of physiology [J Physiol] 2024 Jul; Vol. 602 (14), pp. 3469-3487. Date of Electronic Publication: 2024 Jun 15.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Cambridge Univ. Press Country of Publication: England NLM ID: 0266262 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-7793 (Electronic) Linking ISSN: 00223751 NLM ISO Abbreviation: J Physiol Subsets: MEDLINE
- Publication Information: Publication: Oxford : Blackwell : Cambridge Univ. Press
Original Publication: London, Cambridge Univ. Press. - Subject Terms: Muscle Fatigue*/physiology ; Membrane Potentials*/physiology ; Muscle Fibers, Skeletal*/physiology ; Muscle Fibers, Skeletal*/metabolism ; Sodium*/metabolism; Animals ; Male ; Rats ; Muscle, Skeletal/physiology ; Rats, Wistar ; Sodium-Potassium-Exchanging ATPase/metabolism ; Rest/physiology ; Muscle Contraction/physiology ; Electric Stimulation
- Abstract: Large trans-sarcolemmal ionic shifts occur with fatiguing exercise or stimulation of isolated muscles. However, it is unknown how resting membrane potential (E
M ) and intracellular sodium concentration ([Na + ]i ) change with repeated contractions in living mammals. We investigated (i) whether [Na + ]i (peak, kinetics) can reveal changes of Na + -K + pump activity during brief or fatiguing stimulation and (ii) how resting EM and [Na + ]i change during fatigue and recovery of rat soleus muscle in situ. Muscles of anaesthetised rats were stimulated with brief (10 s) or repeated tetani (60 Hz for 200 ms, every 2 s, for 30 s or 300 s) with isometric force measured. Double-barrelled ion-sensitive microelectrodes were used to quantify resting EM and [Na + ]i . Post-stimulation data were fitted using polynomials and back-extrapolated to time zero recovery. Mean pre-stimulation resting EM (layer 2-7 fibres) was -71 mV (surface fibres were more depolarised), and [Na + ]i was 14 mM. With deeper fibres, 10 s stimulation (2-150 Hz) increased [Na + ]i to 38-46 mM whilst simultaneously causing hyperpolarisations (7.3 mV for 2-90 Hz). Fatiguing stimulation for 30 s or 300 s led to end-stimulation resting EM of -61 to -53 mV, which recovered rapidly (T1/2 , 8-22 s). Mean end-stimulation [Na + ]i increased to 86-101 mM with both fatigue protocols and the [Na + ]i recovery time-course (T1/2 , 21-35 s) showed no difference between protocols. These combined findings suggest that brief stimulation hyperpolarises the resting EM , likely via maximum Na + -induced stimulation of the Na + -K + pump. Repeated tetani caused massive depolarisation and elevations of [Na + ]i that together lower force, although they likely interact with other factors to cause fatigue. [Na + ]i recovery kinetics provided no evidence of impaired Na + -K + pump activity with fatigue. KEY POINTS: It is uncertain how resting membrane potential, intracellular sodium concentration ([Na + ]i ), and sodium-potassium (Na + -K + ) pump activity change during repeated muscle contractions in living mammals. For rat soleus muscle fibres in situ, brief tetanic stimulation for 10 s led to raised [Na + ]i , anticipated to evoke maximal Na + -induced stimulation of the Na + -K + pump causing an immediate hyperpolarisation of the sarcolemma. More prolonged stimulation with repeated tetanic contractions causes massive elevations of [Na + ]i , which together with large depolarisations (via K + disturbances) likely reduce force production. These effects occurred without impairment of Na + -K + pump function. Together these findings suggest that rapid activation of the Na + -K + pump occurs with brief stimulation to maintain excitability, whereas more prolonged stimulation causes rundown of the trans-sarcolemmal K + gradient (hence depolarisation) and Na + gradient, which in combination can impair contraction to contribute to fatigue in living mammals.
(© 2024 The Authors. The Journal of Physiology © 2024 The Physiological Society.) - References: Allen, D. G., Clugston, E., Petersen, Y., Röder, I. V., Chapman, B., & Rudolf, R. (2011). Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. Journal of Applied Physiology, 111(2), 358–366.
Atrakchi, A., Gray, S. D., & Carlsen, R. C. (1994). Development of soleus muscles in SHR: relationship of muscle deficits to rise in blood pressure. American Journal of Physiology‐Cell Physiology, 267(3), C827–C835.
Balog, E. M., & Fitts, R. H. (1996). Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle. Journal of Applied Physiology, 81(2), 679–685.
Bergström, J., Guarnieri, G., & Hultman, E. (1971). Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. Journal of Applied Physiology, 30(1), 122–125.
Buchanan, R., Nielsen, O. B., & Clausen, T. (2002). Excitation‐ and ß2‐agonist‐induced activation of the Na+–K+ pump in rat soleus muscle. The Journal of Physiology, 545(1), 229–240.
Cairns, S. P., Buller, S. J., Loiselle, D. S., & Renaud, J.‐M. (2003). Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue. American Journal of Physiology‐Cell Physiology, 285(5), C1131–C1141.
Cairns, S. P., Leader, J. P., & Loiselle, D. S. (2011). Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis‐à‐vis 25°C: implications for fatigue. Pflugers Archiv, 461(4), 469–479.
Cairns, S. P., Leader, J. P., Higgins, A., & Renaud, J.‐M. (2022). The peak force‐resting membrane potential relationships of mouse fast‐ and slow‐twitch muscle. American Journal of Physiology‐Cell Physiology, 322(6), C1151–C1165.
Cairns, S. P., & Lindinger, M. I. (2008). Do multiple ionic interactions contribute to skeletal muscle fatigue? The Journal of Physiology, 586(17), 4039–4054.
Cairns, S. P., & Renaud, J. M. (2023). The potassium‐glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue. The Journal of Physiology, 601(24), 5669–5687.
Cairns, S. P., Ruzhynsky, V., & Renaud, J.‐M. (2004). Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. American Journal of Physiology‐Cell Physiology, 287(3), C762–C770.
Cifelli, C., Boudreault, L., Gong, B., Bercier, J.‐P., & Renaud, J.‐M. (2008). Contractile dysfunctions in ATP‐dependent K+ channel‐deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L‐type Ca2+ channels. Experimental Physiology, 93(10), 1126–1138.
Clausen, T., Andersen, S. L., & Flatman, J. A. (1993). Na+‐K+ pump stimulation elicits recovery of contractility in K(+)‐paralysed rat muscle. The Journal of Physiology, 472, 521–536.
Clausen, T. (2003). Na+–K+ pump regulation and skeletal muscle contractility. Physiological Reviews, 83(4), 1269–1324.
Cunningham, J. N., Carter, N. W., Rector, F. C., & Seldin, D. W. (1971). Resting transmembrane potential difference of skeletal muscle in normal subjects and severely ill patients. Journal of Clinical Investigation, 50(1), 49–59.
Deveau, J. S. T., Lindinger, M. I., & Grodzinski, B. (2005). An improved method for constructing and selectively silanizing double‐barreled, neutral liquid carrier, ion‐selective microelectrodes. Biological Proced Online, 7(1), 31–40.
Donaldson, P. J., & Leader, J. P. (1984). Intracellular ionic activities in the EDL muscle of the mouse. Pflügers Archiv‐European Journal of Physiology, 400(2), 166–170.
Everts, M. E., & Clausen, T. (1994). Excitation‐induced activation of the Na+–K+ pump in rat skeletal muscle. American Journal of Physiology‐Cell Physiology, 266(4), C925–C934.
Fenn, W. O., & Cobb, D. M. (1936). Electrolyte changes in muscle during activity. American Journal of Physiology, 115(2), 345–356.
Filatov, G. N., Pinter, M. J., & Rich, M. M. (2005). Resting potential‐dependent regulation of the voltage sensitivity of sodium channel gating in rat skeletal muscle in vivo. Journal of General Physiology, 126(2), 161–172.
Fong, C. N., Atwood, H. L., & Charlton, M. P. (1986). Intracellular sodium‐activity at rest and after tetanic stimulation in muscles of normal and dystrophic (dy2j/dy2j) C57BL/6J mice. Experimental Neurology, 93(2), 359–368.
Gagnon, K. B., & Delpire, E. (2021). Sodium transporters in human health and disease. Frontiers in Physiology, 11, 588664.
Gunnarsson, T. P., Christensen, P. M., Thomassen, M., Nielsen, L. R., & Bangsbo, J. (2013) Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short‐term performance in endurance‐trained cyclists. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 305(7), R811–R821.
Hicks, A., & Mccomas, A. J. (1989). Increased sodium pump activity following repetitive stimulation of rat soleus muscles. The Journal of Physiology, 414, 337–349.
Hník, P., Holas, M., Krekule, I., Kříž, N., Mejsnar, J., Smieško, V., Ujec, E., & Vyskočil, F. (1976).Work‐induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion‐exchanger microelectrodes. Pflügers Archiv – European Journal of Physiology, 362(1), 85–94.
Hostrup, M., Cairns, S. P., & Bangsbo, J. (2021). Muscle ionic shifts during exercise: implications for fatigue and exercise performance. Comprehensive Physiology, 11(3), 1895–1959.
Juel, C. (1986). Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion‐gradient recovery. Pflügers Archiv – European Journal of Physiology, 406(5), 458–463.
Juel, C. (1988a). Intracellular pH recovery and lactate efflux in mouse soleus muscles stimulated in vitro: the involvement of sodium/proton exchange and a lactate carrier. Acta Physiologica Scandinavica, 132(3), 363–371.
Juel, C. (1988b). The effect of ß2‐adrenoceptor activation on ion‐shifts and fatigue in mouse soleus muscles stimulated in vitro. Acta Physiologica Scandinavica, 134(2), 209–216.
Juel, C. (1988c) Muscle action potential propagation velocity changes during activity. Muscle & Nerve, 11(7), 714–719.
Juel, C. (2009). Na+‐K+‐ATPase in rat skeletal muscle: muscle fiber‐specific differences in exercise‐induced changes in ion affinity and maximal activity. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 296(1), R125–R132.
Karelis, A. D., Peronnet, F., & Gardiner, P. F. (2003). Insulin does not mediate the attenuation of fatigue associated with glucose infusion in rat plantaris muscle. Journal of Applied Physiology, 95(1), 330–335.
Karelis, A. D., Péronnet, F., & Gardiner, P. F. (2005). Resting membrane potential of rat plantaris muscle fibers after prolonged indirect stimulation in situ: Effect of glucose infusion. Canadian Journal of Applied Physiology, 30(1), 105–112.
Kravtsova, V. V., Matchkov, V. V., Bouzinova, E. V., Vasiliev, A. N., Razgovorova, I. A., Heiny, J. A., & Krivoi, I. I. (2015). Isoform‐specific Na,K‐ATPase alterations precede disuse‐induced atrophy of rat soleus muscle. Biomed Research International, 2015, 1.
Kristensen, M., & Juel, C. (2010). Na+,K+‐ATPase Na+ affinity in rat skeletal muscle fiber types. Journal of Membrane Biology, 234(1), 35–45.
Kuiack, S., & Mccomas, A. (1992). Transient hyperpolarization of non‐contracting muscle fibres in anaesthetized rats. The Journal of Physiology, 454(1), 609–618.
Lindinger, M. I., & Cairns, S. P. (2021). Regulation of muscle potassium: exercise performance, fatigue and health implications. European Journal of Applied Physiology, 121(3), 721–748.
Lindinger, M. I., & Heigenhauser, G. J. F. (1991). The roles of ion fluxes in skeletal muscle fatigue. Canadian Journal of Physiology and Pharmacology, 69(2), 246–253.
Lindinger, M. I., Heigenhauser, G. J., & Spriet, L. L. (1987). Effects of intense swimming and tetanic electrical stimulation on skeletal muscle ions and metabolites. Journal of Applied Physiology, 63(6), 2331–2339.
Locke, S., & Solomon, H. C. (1967). Relation of resting potential of rat gastrocnemius and soleus muscles to innervation, activity and the Na‐K pump. Journal of Experimental Zoology, 166(3), 3.
Macdonald, W. A., Nielsen, O. B., & Clausen, T. (2008). Effects of calcitonin gene‐related peptide on rat soleus muscle excitability: mechanisms and physiological significance. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 295(4), R1214–R1223.
Manoharan, P., Radzyukevich, T. L., Hakim Javadi, H., Stiner, C. A., Landero Figueroa, J. A., Lingrel, J. B., & Heiny, J. A. (2015). Phospholemman is not required for the acute stimulation of Na+‐K+‐ATPase α2‐activity during skeletal muscle fatigue. American Journal of Physiology‐Cell Physiology, 309(12), C813–C822.
Matar, W., Lunde, J. A., Jasmin, B. J., & Renaud, J. M. (2001). Denervation enhances the physiological effects of the KATP channel during fatigue in EDL and soleus muscle. American Journal of Physiology‐Regulatory Integrative and Comparative Physiology, 281(1), R56–R65.
Mckenna, M. J., Gissel, H., & Clausen, T. (2003). Effects of electrical stimulation and insulin on Na+‐K+‐ATPase ([3H]ouabain binding) in rat skeletal muscle. The Journal of Physiology, 547(2), 567–580.
Medbø, J. I., & Sejersted, O. M. (1990). Plasma potassium changes with high‐intensity exercise. The Journal of Physiology, 421(1), 105–122.
Nagaoka, R., Yamashita, S., Mizuno, M., & Akaike, N. (1994). Intracellular Na+ and K+ shifts induced by contractile activities of rat skeletal muscles. Comparative Biochemistry and Physiology, 109(4), 957–965.
Nielsen, O. B., & Clausen, T. (1997) Regulation of Na+–K+ pump activity in contracting rat muscle. The Journal of Physiology, 503(3), 571–581.
Nielsen, O. B., Ørtenblad, N., Lamb, G. D., & Stephenson, D. G. (2004) Excitability of the T‐tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+–K+ pump activity. The Journal of Physiology, 557(1), 133–146.
Overgaard, K., & Nielsen, O. B. (2001). Activity‐induced recovery of excitability in K+‐depressed rat soleus muscle. American Journal of Physiology‐Regulatory, Integrative Comparative Physiology, 280(1), R48–R55.
Overgaard, K., Nielsen, O. B., & Clausen, T. (1997). Effects of reduced electrochemical Na+ gradient on contractility in skeletal muscle: role of the Na+–K+ pump. Pflügers Archiv ‐ European Journal of Physiology, 434(4), 457–465.
Overgaard, K., Nielsen, O. B., Flatman, J. A., & Clausen, T. (1999). Relations between excitability and contractility in rat soleus muscle: role of the Na+–K+ pump and Na+/K+ gradients. The Journal of Physiology, 518(1), 215–225.
Pickar, J. G., Carlsen, R. C., Atrakchi, A., & Gray, S. D. (1994) Increased Na+–K+ pump number and decreased pump activity in soleus muscles in SHR. American Journal of Physiology‐Cell Physiology, 267(3), C836–C844.
Pitzer, K. S., & Mayorga, G. (1973). Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. Journal of Physical Chemistry, 77(19), 2300–2308.
Pirkmajer, S., & Chibalin, A. V. (2016). Na,K‐ATPase regulation in skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 311(1), E1–E31.
Radzyukevich, T. L., Lingrel, J. B., & Heiny, J. A. (2009). The cardiac glycoside binding site on the Na,K‐ATPase α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. Proceedings of the National Academy of Sciences, USA, 106(8), 2565–2570.
Renaud, J.‐M., Ørtenblad, N., Mckenna, M. J., & Overgaard, K. (2023) Exercise and fatigue: integrating the role of K+, Na+ and Cl− in the regulation of sarcolemmal excitability of skeletal muscle. European Journal of Applied Physiology, 123(11), 2345–2378.
Sahlin, K., Alvestrand, A., Brandt, R., & Hultman, E. (1978). Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. Journal of Applied Physiology, 45(3), 474–480.
Semb, S. O., Amundsen, B., & Sejersted, O. M. (1988). Na,K Pump stimulation by intracellular Na in isolated, intact sheep cardiac Purkinje fibers. Journal of General Physiology, 161(1), 1–5.
Sejersted, O. M., & Sjøgaard, G. (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiological Reviews, 80(4), 1411–1481.
Semb, S. O., Amundsen, B., & Sejersted, O. M. (1997). A new improved way of making double‐barrelled ion‐selective micro‐electrodes. Acta Physiologica Scandinavica, 161(1), 1–5.
Semb, S. O., & Sejersted, O. M. (1996). Fuzzy space and control of Na+,K+ pump rate in heart and skeletal muscle. Acta Physiologica Scandinavica, 156(3), 213–225.
Sjøgaard, G. (1986). Water and electrolyte fluxes during exercise and their relation to muscle fatigue. Acta Physiologica Scandinavica Supplementum, 556, 129–136.
Sjogaard, G., Adams, R. P., & Saltin, B. (1985). Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 248(2), R190–R196.
Sréter, F. A. (1963). Cell water, sodium, and potassium in stimulated red and white mammalian muscles. American Journal of Physiology, 205(6), 1295–1298.
Verburg, E., Thorud, H.‐M. S., Eriksen, M., Vøllestad, N. K., & Sejersted, O. M. (2001). Muscle contractile properties during intermittent nontetanic stimulation in rat skeletal muscle. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 281(6), R1952–R1965.
Vyskočil, F., Hník, P., Rehfeldt, H., Vejsada, R., & Ujec, E. (1983). The measurement of K+e concentration changes in human muscles during volitional contractions. Pflügers Archiv‐European Journal of Physiology, 399(3), 235–237.
Wang, X., Nawaz, M., Dupont, C., Myers, J. H., Burke, S. R., Bannister, R. A., Foy, B. D., Voss, A. A., & Rich, M. M. (2022). The role of action potential changes in depolarization‐induced failure of excitation contraction coupling in mouse skeletal muscle. eLife, 11, e71588.
Zhu, Z., Sierra, A., Burnett, C. M.‐L., Chen, B., Subbotina, E., Koganti, S. R. K., Gao, Z., Wu, Y., Anderson, M. E., Song, L.‐S., Goldhamer, D. J., Coetzee, W. A., Hodgson‐Zingman, D. M., & Zingman, L. V. (2014). Sarcolemmal ATP‐sensitive potassium channels modulate skeletal muscle function under low‐intensity workloads. Journal of General Physiology, 143(1), 119–134. - Grant Information: Natural Sciences and Engineering Research Council of Canada (NSERC); Anders Jahres Fond til Vitenskapens Fremme (Anders Jahre's Foundation for the Promotion of Science); Wynette Griffiths Research Trust
- Contributed Indexing: Keywords: Na+‐K+‐ATPase; depolarisation; hyperpolarisation; maximal sodium transport; sodium–potassium pump
- Accession Number: 9NEZ333N27 (Sodium)
EC 7.2.2.13 (Sodium-Potassium-Exchanging ATPase) - Publication Date: Date Created: 20240615 Date Completed: 20240715 Latest Revision: 20240715
- Publication Date: 20240716
- Accession Number: 10.1113/JP285870
- Accession Number: 38877870
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.