Ureibacillus aquaedulcis sp. nov., isolated from freshwater well and reclassification of Lysinibacillus yapensis and Lysinibacillus antri as Ureibacillus yapensis comb. nov. and Ureibacillus antri comb. Nov.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      A Gram-stain-positive aerobic, rod-shaped, spore-producing bacterium forming colonies with convex elevation and a smooth, intact margin was isolated from a freshwater sample collected from a well situated in an agricultural field. The 16S rRNA gene sequence of the isolated strain BA0131 T showed the highest sequence similarity to Lysinibacillus yapensis ylb-03 T (99.25%) followed by Ureibacillus chungkukjangi 2RL3-2 T (98.91%) and U. sinduriensis BLB-1 T (98.65%). The strain BA0131 T was oxidase and catalase positive and urease negative. It also tested positive for esculin hydrolysis and reduction of potassium nitrate, unlike its phylogenetically closest relatives. The predominant fatty acids in strain BA0131 T included were anteiso-C 15:0 , iso-C 16:0 , iso-C 15:0 , iso-C 14:0 and the major polar lipids comprised were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The respiratory quinones identified in strain BA0131 T were MK8 (H2) (major) and MK8 (minor). The strain BA0131 T shared the lowest dDDH values with L. yapensis ylb-03 T (21%) followed by U. chungkukjangi 2RL3-2 T (24.2%) and U. sinduriensis BLB-1 T (26.4%) suggesting a closer genetic relationship U. sinduriensis BLB-1 T . The ANI percentage supported the close relatedness with U. sinduriensis BLB-1 T (83.61%) followed by U. chungkukjangi 2RL3-2 T (82.03%) and U. yapensis ylb-03 T (79.57%). The core genome-based phylogeny constructed using over 13,704 amino acid positions and 92 core genes revealed the distinct phylogenetic position of strain BA0131 T among the genus Ureibacillus. The distinct physiological, biochemical characteristics and genotypic relatedness data indicate the strain BA0131 T represents a novel species of the genus Ureibacillus for which the name Ureibacillus aquaedulcis sp. nov. (Type strain, BA0131 T  = MCC 5284 = JCM 36475) is proposed. Additionally, based on extensive genomic and phylogenetic analyses, we propose reclassification of two species, L. yapensis and L. antri, as U. yapensis comb. nov. (Type strain, ylb-03 T  = JCM 32871 T  = MCCC 1A12698 T ) and U. antri (Type strain, SYSU K30002 T  = CGMCC 1.13504 T  = KCTC 33955 T ).
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • Comments:
      Erratum in: Arch Microbiol. 2024 Jun 29;206(7):330. doi: 10.1007/s00203-024-04042-z. (PMID: 38951202)
    • References:
      Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125 https://doi.org/10.1099/ijs.0.63867-0.
      Ahmed I, Sin Y, Paek J et al (2014) Description of Lysinibacillus pakistanensis. Int J Agric Biol 16:447–450. https://doi.org/10.1099/ijs.0.066910-0. (PMID: 10.1099/ijs.0.066910-0)
      Andersson M, Laukkanen M, Nurmiaho-Lassila EL et al (1995) Bacillus thermosphaericus sp. nov. a new thermophilic ureolytic: Bacillus isolated from air. Syst Appl Microbiol 18:203–220. https://doi.org/10.1016/S0723-2020(11)80391-7. (PMID: 10.1016/S0723-2020(11)80391-7)
      Auch AF, Klenk HP, Göker M (2010) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. https://doi.org/10.4056/sigs.541628. (PMID: 10.4056/sigs.541628213046863035261)
      Ausubel FM, Brent R, Kingston RE et al (1994) Current protocols in Molecular Biology. John Willey & Sons, New York. https://doi.org/10.1002/mrd.1080010210. (PMID: 10.1002/mrd.1080010210)
      Azmatunnisa M, Rahul K, Lakshmi K et al (2015) Lysinibacillus acetophenoni sp. nov., a solvent-tolerant bacterium isolated from acetophenone. Int J Syst Evol Microbiol 65:1741–1748. https://doi.org/10.1099/ijs.0.000170. (PMID: 10.1099/ijs.0.00017025740932)
      Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555. https://doi.org/10.1016/j.mimet.2003.08.009. (PMID: 10.1016/j.mimet.2003.08.00914607398)
      Begum MA, Rahul K, Sasikala C, Ramana CV (2016) Lysinibacillus xyleni sp. nov., isolated from a bottle of xylene. Arch Microbiol 198:325–332. https://doi.org/10.1007/s00203-016-1194-8. (PMID: 10.1007/s00203-016-1194-826818686)
      Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099. (PMID: 10.1139/o59-09913671378)
      Blin K, Shaw S, Augustijn HE et al (2023) antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res gkad344. https://doi.org/10.1093/nar/gkad344.
      Blum M, Chang H-Y, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977. (PMID: 10.1093/nar/gkaa97733156333)
      Brown J, Pirrung M, McCue LA (2017) FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33:3137–3139. https://doi.org/10.1093/bioinformatics/btx373. (PMID: 10.1093/bioinformatics/btx373286054495870778)
      Burkett-Cadena M, Sastoque L, Cadena J, Dunlap CA (2019) Lysinibacillus capsici sp. nov, isolated from the rhizosphere of a pepper plant. Antonie Van Leeuwenhoek 112:1161–1167. https://doi.org/10.1007/s10482-019-01248-w. (PMID: 10.1007/s10482-019-01248-w30820713)
      Cantalapiedra CP, Hernández-Plaza A, Letunic I, bioRxiv et al (2021) https://doi.org/10.1093/molbev/msab293.
      Card GL (1973) Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus. J Bacteriol 114:1125–1137. https://doi.org/10.1128/jb.114.3.1125-1137.1973. (PMID: 10.1128/jb.114.3.1125-1137.19734712568285373)
      Chaudhari NM, Gupta VK, Dutta C (2016) BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep 6:1–10. https://doi.org/10.1038/srep24373. (PMID: 10.1038/srep24373)
      Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560. (PMID: 10.1093/bioinformatics/bty560304230866129281)
      Cheng M, Zhang H, Zhang J et al (2015) Lysinibacillus fluoroglycofenilyticus sp. nov., a bacterium isolated from fluoroglycofen contaminated soil. Antonie Van Leeuwenhoek 107:157–164. https://doi.org/10.1007/s10482-014-0313-2. (PMID: 10.1007/s10482-014-0313-225348875)
      Coorevits A, Dinsdale AE, Heyrman J et al (2012) Lysinibacillus macroides sp. nov., nom. Rev. Int J Syst Evol Microbiol 62:1121–1127. https://doi.org/10.1099/ijs.0.027995-0. (PMID: 10.1099/ijs.0.027995-021724959)
      Da Costa MS, Albuquerque L, Nobre MF, Wait R (2011) The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods in microbiology. Elsevier, pp 197–206. https://doi.org/10.1016/B978-0-12-387730-7.00009-7.
      De Maayer P, Aliyu H, Cowan DA (2019) Reorganising the order bacillales through phylogenomics. Syst Appl Microbiol 42:178–189. https://doi.org/10.1016/j.syapm.2018.10.007. (PMID: 10.1016/j.syapm.2018.10.00730447886)
      Duan Y-Q, He S-T, Li Q-Q et al (2013) Lysinibacillus. Tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol 51:289–294. https://doi.org/10.1007/s12275-013-2338-z. (PMID: 10.1007/s12275-013-2338-z23812807)
      Edgar R (2010) Usearch. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States) https://doi.org/10.1093/bioinformatics/btq461.
      Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359. (PMID: 10.1007/BF017343597288891)
      Fortina MG, Pukall R, Schumann P et al (2001) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455. https://doi.org/10.1099/00207713-51-2-447. (PMID: 10.1099/00207713-51-2-44711321090)
      Glazunova OO, Raoult D, Roux V (2006) Bacillus massiliensis sp. nov., isolated from cerebrospinal fluid. Int J Syst Evol Microbiol 56:1485–1488. https://doi.org/10.1099/ijs.0.63982-0. (PMID: 10.1099/ijs.0.63982-016825616)
      Gupta RS, Patel S (2020) Robust demarcation of the family Caryophanaceae (Planococcaceae) and its different genera including three novel genera based on phylogenomics and highly specific molecular signatures. Front Microbiol 10:2821. https://doi.org/10.3389/fmicb.2019.02821. (PMID: 10.3389/fmicb.2019.02821320100636971209)
      Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086. (PMID: 10.1093/bioinformatics/btt086234223393624806)
      Hayat R, Ahmed I, Paek J et al (2014) Lysinibacillus composti sp. nov., isolated from compost. Ann Microbiol 64:1081–1088. https://doi.org/10.1007/s13213-013-0747-1. (PMID: 10.1007/s13213-013-0747-1)
      Jain C, Rodriguez-R LM, Phillippy AM et al (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9. (PMID: 10.1038/s41467-018-07641-9305048556269478)
      Jung MY, Kim J-S, Paek WK et al (2012) Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the g. Int J Syst Evol Microbiol 62:2347–2355. https://doi.org/10.1099/ijs.0.033837-0. (PMID: 10.1099/ijs.0.033837-022140163)
      Kämpfer P, Martin K, Glaeser SP (2013) Lysinibacillus contaminans sp. nov., isolated from surface water. Int J Syst Evol Microbiol 63:3148–3153. https://doi.org/10.1099/ijs.0.049593-0. (PMID: 10.1099/ijs.0.049593-023435244)
      Kan Y, Niu X-K, Rao MPN et al (2020) Lysinibacillus cavernae sp. nov., isolated from cave soil. Arch Microbiol 202:1529–1534. https://doi.org/10.1007/s00203-020-01852-9. (PMID: 10.1007/s00203-020-01852-932232517)
      Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006. (PMID: 10.1016/j.jmb.2015.11.00626585406)
      Kannan M (2018) Scanning electron microscopy: Principle, components and applications. A Textb Fundam Appl Nanotechnol 81–92.
      Kim B-Y, Lee S-Y, Weon H-Y et al (2006) Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int J Syst Evol Microbiol 56:663–666. https://doi.org/10.1099/ijs.0.63703-0. (PMID: 10.1099/ijs.0.63703-016514046)
      Kim J-Y, Park S-H, Oh D-C, Kim Y-J (2013a) Lysinibacillus jejuensis sp. nov., isolated from swinery waste. J Microbiol 51:872–876. https://doi.org/10.1007/s12275-013-2500-7. (PMID: 10.1007/s12275-013-2500-724385367)
      Kim S-J, Jang Y-H, Hamada M et al (2013) Lysinibacillus chungkukjangi sp. nov., isolated from Chungkukjang, Korean fermented soybean food. J Microbiol 51:400–404. https://doi.org/10.1007/s12275-013-2664-1. (PMID: 10.1007/s12275-013-2664-123812821)
      Kong D, Wang Y, Zhao B et al (2014) Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 64:2593–2598. https://doi.org/10.1099/ijs.0.061465-0. (PMID: 10.1099/ijs.0.061465-024814335)
      Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054. (PMID: 10.1093/molbev/msw054270049048210823)
      La Duc MT, Satomi M, Venkateswaran K (2004) Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int J Syst Evol Microbiol 54:195–201.
      Lamboy WF (1994) The accuracy of the maximum parsimony method for phylogeny reconstruction with morphological characters. Syst Bot 489–505. https://doi.org/10.2307/2419773.
      Lee CS, Jung Y-T, Park S et al (2010) Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int J Syst Evol Microbiol 60:281–286. https://doi.org/10.1099/ijs.0.013367-0. (PMID: 10.1099/ijs.0.013367-019651743)
      Liu H, Song Y, Chen F et al (2013) Lysinibacillus manganicus sp. nov., isolated from manganese mining soil. Int J Syst Evol Microbiol 63:3568–3573. https://doi.org/10.1099/ijs.0.050492-0. (PMID: 10.1099/ijs.0.050492-023584285)
      Lu J-R, Liu G-H (2021) Lysinibacillus agricola sp. nov., isolated from soil. Arch Microbiol 203:4173–4178. https://doi.org/10.1007/s00203-021-02394-4. (PMID: 10.1007/s00203-021-02394-434075442)
      Meier-Kolthoff JP, Klenk H-P, Göker M (2014) Taxonomic use of DNA G + C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0. (PMID: 10.1099/ijs.0.056994-024505073)
      Minnikin DE, O’donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6. (PMID: 10.1016/0167-7012(84)90018-6)
      Miwa H, Ahmed I, Yokota A, Fujiwara T (2009) Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 59:1427–1432. https://doi.org/10.1099/ijs.0.65455-0. (PMID: 10.1099/ijs.0.65455-019502328)
      Mual P, Singh NK, Verma A et al (2016) Reclassification of Bacillus isronensis as Solibacillus isronensis comb. nov. and emended description of genus Solibacillus Krishnamurthi et al. 2009. Int J Syst Evol Microbiol 66:2113–2120. https://doi.org/10.1099/ijsem.0.000982. (PMID: 10.1099/ijsem.0.00098226907585)
      Na S-I, Kim YO, Yoon S-H et al (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6. (PMID: 10.1007/s12275-018-8014-629492869)
      Narsing Rao MP, Dong Z-Y, Niu X-K et al (2020) Lysinibacillus antri sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 70:3295–3299. https://doi.org/10.1099/ijsem.0.004169. (PMID: 10.1099/ijsem.0.00416932375943)
      Oren A, Garrity GM (2019) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 69:5–9. https://doi.org/10.1099/ijsem.0.003740. (PMID: 10.1099/ijsem.0.00374030614438)
      Ouoba LII, Vouidibio Mbozo AB, Thorsen L et al (2015) Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo. Int J Syst Evol Microbiol 65:4256–4262. https://doi.org/10.1099/ijsem.0.000570. (PMID: 10.1099/ijsem.0.00057026333923)
      Papadioti A, Azhar EI, Bibi F et al (2017) Lysinibacillus. Saudimassiliensis’ sp. nov., a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia. New Microbes New Infect 16:25–27. https://doi.org/10.1016/j.nmni.2016.12.011. (PMID: 10.1016/j.nmni.2016.12.01128119783)
      Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114. (PMID: 10.1101/gr.186072.114259774774484387)
      Parte AC, Carbasse JS, Meier-Kolthoff JP et al (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607. https://doi.org/10.1099/ijsem.0.004332. (PMID: 10.1099/ijsem.0.004332327014237723251)
      Prakash O, Nimonkar Y, Munot H et al (2014) Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera. Int J Syst Evol Microbiol 64:3427–3433. https://doi.org/10.1099/ijs.0.063339-0. (PMID: 10.1099/ijs.0.063339-025048212)
      Rahi P, Kurli R, Khairnar M et al (2017) Description of Lysinibacillus telephonicus sp. nov., isolated from the screen of a cellular phone. Int J Syst Evol Microbiol 67:2289–2295. https://doi.org/10.1099/ijsem.0.001943. (PMID: 10.1099/ijsem.0.00194328699866)
      Reddy GSN, Uttam A, Shivaji S (2008) Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int J Syst Evol Microbiol 58:2330–2335. https://doi.org/10.1099/ijs.0.65515-0. (PMID: 10.1099/ijs.0.65515-018842851)
      Ren Y, Chen S, Yao H, Deng L (2015) Lysinibacillus cresolivorans sp. nov., an m-cresol-degrading bacterium isolated from coking wastewater treatment aerobic sludge. Int J Syst Evol Microbiol 65:4250–4255. https://doi.org/10.1099/ijsem.0.000569. (PMID: 10.1099/ijsem.0.00056926333922)
      Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454. (PMID: 10.1093/oxfordjournals.molbev.a0404543447015)
      Sasser M (2001) “Tracking” a strain using the Sherlock Microbial Identification System (MIS); Technical Note #102; MIDI: Sandy Drive Newark, DE, USA, p 14.
      Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Science 77:194.
      Schumann P (2011) Peptidoglycan structure. Methods in microbiology. Elsevier, pp 101–129. https://doi.org/10.1016/B978-0-12-387730-7.00005-X.
      Seiler H, Scherer S, Wenning M (2013) Lysinibacillus meyeri sp. nov., isolated from a medical practice. Int J Syst Evol Microbiol 63:1512–1518. https://doi.org/10.1099/ijs.0.039420-0. (PMID: 10.1099/ijs.0.039420-022888186)
      Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420.
      Sun J-Q, Xu L, Wu X-L (2017) Lysinibacillus alkalisoli sp. nov., isolated from saline–alkaline soil. Int J Syst Evol Microbiol 67:67–71. https://doi.org/10.1099/ijsem.0.001571. (PMID: 10.1099/ijsem.0.00157127902208)
      Sun J, Lu F, Luo Y et al (2023) OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res gkad313. https://doi.org/10.1093/nar/gkad313.
      Tindall BJ (2019) When treated as heterotypic synonyms the names Caryophanaceae Peshkoff 1939 (approved lists 1980) and Caryophanales Peshkoff 1939 (approved lists 1980) have priority over the names Planococcaceae Krasil’Nikov 1949 (approved lists 1980) and Bacillales Prév. Int J Syst Evol Microbiol 69:2187–2195. https://doi.org/10.1099/ijsem.0.003354. (PMID: 10.1099/ijsem.0.00335430896383)
      Tindall BJ (2020) Erratum: when treated as heterotypic synonyms the names Caryophanaceae Peshkoff 1939 (approved lists 1980) and Caryophanales Peshkoff 1939 (approved lists 1980) have priority over the names Planococcaceae Krasil’Nikov 1949 (approved lists 190) and Bacill. Int J Syst Evol Microbiol 70:2952. https://doi.org/10.1099/ijsem.0.004079. (PMID: 10.1099/ijsem.0.00407932559832)
      Weon H-Y, Lee S-Y, Kim B-Y et al (2007) Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int J Syst Evol Microbiol 57:2908–2911. https://doi.org/10.1099/ijs.0.65232-0. (PMID: 10.1099/ijs.0.65232-018048747)
      Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595. (PMID: 10.1371/journal.pcbi.1005595285948275481147)
      Yang L-L, Huang Y, Liu J et al (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek 102:53–59. https://doi.org/10.1007/s10482-012-9712-4. (PMID: 10.1007/s10482-012-9712-422367102)
      Yarza P, Ludwig W, Euzéby J et al (2010) Update of the All-species living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299. https://doi.org/10.1016/j.syapm.2010.08.001. (PMID: 10.1016/j.syapm.2010.08.00120817437)
      Yoon S-H, Ha S-M, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613. https://doi.org/10.1099/ijsem.0.001755. (PMID: 10.1099/ijsem.0.001755280055265563544)
      Yu J, Guan X, Liu C et al (2016) Lysinibacillus endophyticus sp. nov., an indole-3-acetic acid producing endophytic bacterium isolated from corn root (Zea mays Cv. Xinken-5). Antonie Van Leeuwenhoek 109:1337–1344. https://doi.org/10.1007/s10482-016-0773-7. (PMID: 10.1007/s10482-016-0773-727401830)
      Yu L, Tang X, Wei S et al (2019) Isolation and characterization of a novel piezotolerant bacterium Lysinibacillus yapensis sp. nov., from deep-sea sediment of the Yap Trench, Pacific Ocean. J Microbiol 57:562–568. https://doi.org/10.1007/s12275-019-8709-3. (PMID: 10.1007/s12275-019-8709-331124045)
      Zhao Y, Wu J, Yang J et al (2012) PGAP: Pan-genomes Analysis Pipeline. Bioinformatics 28:416–418. https://doi.org/10.1093/bioinformatics/btr655. (PMID: 10.1093/bioinformatics/btr65522130594)
      Zhao F, Feng Y, Chen R et al (2015) Lysinibacillus alkaliphilus sp. nov., an extremely alkaliphilic bacterium, and emended description of genus Lysinibacillus. Int J Syst Evol Microbiol 65:2426–2431. https://doi.org/10.1007/s12275-019-8709-3. (PMID: 10.1007/s12275-019-8709-325908711)
      Zhou S, Tang J, Qin D et al (2014) Ureibacillus defluvii sp. nov., isolated from a thermophilic microbial fuel cell. Int J Syst Evol Microbiol 64:1617–1621. https://doi.org/10.1099/ijs.0.056655-0. (PMID: 10.1099/ijs.0.056655-024491829)
      Zhu C, Sun G, Chen X et al (2014) Lysinibacillus varians sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle. Int J Syst Evol Microbiol 64:3644–3649. https://doi.org/10.1099/ijs.0.068320-0. (PMID: 10.1099/ijs.0.068320-025070216)
    • Grant Information:
      BT/Coord.II/01/03/2016 Department of Biotechnology, Ministry of Science and Technology, India
    • Contributed Indexing:
      Keywords: Bacillus; Lysinibacillus; Ureibacillus; Freshwater bacteria
    • Accession Number:
      0 (RNA, Ribosomal, 16S)
      0 (Fatty Acids)
      0 (DNA, Bacterial)
      0 (Phospholipids)
    • Publication Date:
      Date Created: 20240502 Date Completed: 20240502 Latest Revision: 20240701
    • Publication Date:
      20240702
    • Accession Number:
      10.1007/s00203-024-03970-0
    • Accession Number:
      38698177