Human Umbilical Vein Endothelial Cells Survive on the Ischemic TCA Cycle under Lethal Ischemic Conditions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Chemical Society Country of Publication: United States NLM ID: 101128775 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1535-3907 (Electronic) Linking ISSN: 15353893 NLM ISO Abbreviation: J Proteome Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, D.C. : American Chemical Society, c2002-
    • Subject Terms:
    • Abstract:
      It is generally believed that vascular endothelial cells (VECs) rely on glycolysis instead of the tricarboxylic acid (TCA) cycle under both normoxic and hypoxic conditions. However, the metabolic pattern of human umbilical vein endothelial cells (HUVECs) under extreme ischemia (hypoxia and nutrient deprivation) needs to be elucidated. We initiated a lethal ischemic model of HUVECs, performed proteomics and bioinformatics, and verified the metabolic pattern shift of HUVECs. Ischemic HUVECs displayed extensive aerobic respiration, including upregulation of the TCA cycle and mitochondrial respiratory chain in mitochondria and downregulation of glycolysis in cytoplasm. The TCA cycle was enhanced while the cell viability was decreased through the citrate synthase pathway when substrates of the TCA cycle (acetate and/or pyruvate) were added and vice versa when inhibitors of the TCA cycle (palmitoyl-CoA and/or avidin) were applied. The inconsistency of the TCA cycle level and cell viability suggested that the extensive TCA cycle can keep cells alive yet generate toxic substances that reduce cell viability. The data revealed that HUVECs depend on "ischemic TCA cycle" instead of glycolysis to keep cells alive under lethal ischemic conditions, but consideration must be given to relieve cell injury.
    • References:
      J Proteome Res. 2021 Sep 3;20(9):4529-4542. (PMID: 34382403)
      Bioessays. 2013 Nov;35(11):965-73. (PMID: 24115022)
      J Mol Cell Cardiol. 2017 Nov;112:104-113. (PMID: 28935506)
      Cancer Metab. 2014 Sep 15;2:19. (PMID: 25250177)
      Cell Metab. 2013 Nov 5;18(5):634-47. (PMID: 23973331)
      Front Physiol. 2019 Mar 08;10:201. (PMID: 30906265)
      Genes Dis. 2020 Feb 07;7(3):299-307. (PMID: 32884984)
      Int J Cancer. 2019 Feb 15;144(4):674-686. (PMID: 30121950)
      Cell Metab. 2006 Mar;3(3):177-85. (PMID: 16517405)
      Mol Metab. 2019 Jul;25:11-19. (PMID: 31005563)
      Eur J Biochem. 1986 Apr 1;156(1):15-22. (PMID: 3514213)
      Nat Rev Cancer. 2003 Oct;3(10):721-32. (PMID: 13130303)
      EMBO Mol Med. 2014 Jul 25;6(9):1105-20. (PMID: 25063693)
      Mol Metab. 2018 Jan;7:23-34. (PMID: 29153923)
      Circ Res. 2007 Feb 2;100(2):158-73. (PMID: 17272818)
      J Mol Cell Cardiol. 1990 Dec;22(12):1393-404. (PMID: 2089157)
      Cell. 2013 Aug 1;154(3):651-63. (PMID: 23911327)
      Nat Rev Cancer. 2016 Nov;16(11):732-749. (PMID: 27658529)
      Cell Physiol Biochem. 2016;38(4):1575-88. (PMID: 27082814)
      Cell Metab. 2011 Oct 5;14(4):443-51. (PMID: 21982705)
      Nat Rev Cancer. 2004 Nov;4(11):891-9. (PMID: 15516961)
      J Cell Biol. 1977 Feb;72(2):441-55. (PMID: 833203)
      Genes Dis. 2018 Nov 14;6(4):431-440. (PMID: 31832523)
      Ann Plast Surg. 2011 Jan;66(1):92-7. (PMID: 21042172)
      Mol Metab. 2019 Feb;20:14-27. (PMID: 30580967)
      Nature. 1976 Jun 24;261(5562):702-5. (PMID: 934318)
      Mol Metab. 2018 Mar;9:28-42. (PMID: 29428596)
      Nature. 2017 May 11;545(7653):224-228. (PMID: 28467822)
      Compr Physiol. 2011 Jan;1(1):357-72. (PMID: 23737177)
      Front Immunol. 2017 Jul 21;8:837. (PMID: 28785263)
      Circulation. 2006 Jun 6;113(22):2630-41. (PMID: 16735674)
      Nature. 2015 Apr 9;520(7546):192-197. (PMID: 25830893)
      Circulation. 2017 Dec 19;136(25):2451-2467. (PMID: 28971999)
      Curr Opin Clin Nutr Metab Care. 2015 Jul;18(4):346-53. (PMID: 26001655)
      Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17478-83. (PMID: 23047702)
      Genes Dis. 2021 Mar 01;9(2):549-561. (PMID: 35224166)
      Mol Cell. 2015 Jan 8;57(1):95-107. (PMID: 25482511)
      Cell. 2013 Jun 6;153(6):1239-51. (PMID: 23746840)
      J Intern Med. 2013 Feb;273(2):156-65. (PMID: 23216817)
      Am J Physiol. 1997 Jul;273(1 Pt 1):C205-13. (PMID: 9252458)
      Int J Hematol. 2012 May;95(5):457-63. (PMID: 22535382)
      J Proteome Res. 2020 Mar 6;19(3):1154-1168. (PMID: 31940440)
      Methods Enzymol. 2014;542:425-55. (PMID: 24862279)
      Cell Metab. 2018 Dec 4;28(6):881-894.e13. (PMID: 30146488)
      Free Radic Biol Med. 2010 Apr 1;48(7):905-14. (PMID: 20093177)
      Angiogenesis. 2015 Oct;18(4):477-88. (PMID: 26092770)
      World J Stem Cells. 2014 Sep 26;6(4):491-6. (PMID: 25258671)
      Trends Endocrinol Metab. 2013 Dec;24(12):589-96. (PMID: 24075830)
    • Contributed Indexing:
      Keywords: citrate synthase; glycolysis; ischemia; tricarboxylic acid cycle; vascular endothelial cells
    • Accession Number:
      0 (Tricarboxylic Acids)
      1405-69-2 (Avidin)
      8558G7RUTR (Pyruvic Acid)
      EC 2.3.3.1 (Citrate (si)-Synthase)
      SAA04E81UX (Coenzyme A)
    • Publication Date:
      Date Created: 20220908 Date Completed: 20221010 Latest Revision: 20221108
    • Publication Date:
      20240829
    • Accession Number:
      PMC9552233
    • Accession Number:
      10.1021/acs.jproteome.2c00255
    • Accession Number:
      36074008