Vegetation shapes aboveground invertebrate communities more than soil properties and pollution: a preliminary investigation on a metal-contaminated site.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      Pollution with trace metals (TM) has been shown to affect diversity and/or composition of plant and animal communities. While ecotoxicological studies have estimated the impact of TM contamination on plant and animal communities separately, ecological studies have widely demonstrated that vegetation is an important factor shaping invertebrate communities. It is supposed that changes in invertebrate communities under TM contamination would be explained by both direct impact of TM on invertebrate organisms and indirect effects due to changes in plant communities. However, no study has clearly investigated which would more importantly shape invertebrate communities under TM contamination. Here, we hypothesized that invertebrate communities under TM contamination would be affected more importantly by plant communities which constitute their habitat and/or food than by direct impact of TM. Our analysis showed that diversity and community identity of flying invertebrates were explained only by plant diversity which was not affected by TM contamination. Diversity of ground-dwelling (GD) invertebrates in spring was explained more importantly by plant diversity (27% of variation) than by soil characteristics including TM concentrations (8%), whereas their community identity was evenly explained by plant diversity and soil characteristics (2-7%). In autumn, diversity of GD invertebrates was only explained by plant diversity (12%), and their identity was only explained by soil characteristics (8%). We conclude that vegetation shapes invertebrate communities more importantly than direct effects of TM on invertebrates. Vegetation should be taken into account when addressing the impacts of environmental contamination on animal communities.
      (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Babin-Fenske J, Anand M (2011) Patterns of insect communities along a stress gradient following decommissioning of a Cu–Ni smelter. Environ Pollut 159:3036–3043. https://doi.org/10.1016/j.envpol.2011.04.011. (PMID: 10.1016/j.envpol.2011.04.011)
      Bes CM, Mench M, Aulen M, Gaste H, Taberly J (2010) Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330:267–280. https://doi.org/10.1007/s11104-009-0198-4. (PMID: 10.1007/s11104-009-0198-4)
      Blanuša M, Mrković-Milić R, Durbešić P (2002) Lead and cadmium in soil and isopoda woodlice in Croatia. Ecotoxicol Environ Saf 52:198–202. https://doi.org/10.1006/eesa.2002.2173. (PMID: 10.1006/eesa.2002.2173)
      Bol’shakov VN, Pyastolova OA, Vershinin VL (2001) Specific features of the formation of animal species communities in technogenic and urbanized landscapes. Russ J Ecol 32:315–325.
      Borcard D, Gillet F, Legendre P (2018) Numerical ecology with R, 2nd edn. Springer, New York.
      Borer ET, Seabloom EW, Tilman D (2012) Plant diversity controls arthropod biomass and temporal stability. Ecol Lett 15:1457–1464. https://doi.org/10.1111/ele.12006. (PMID: 10.1111/ele.12006)
      Bradham KD, Dayton EA, Basta NT, Schroder J, Payton M, Lanno RP (2006) Effect of soil properties on lead bioavailability and toxicity to earthworms. Environ Toxicol Chem 25:769–775.
      Brändle M, Amarell U, Auge H, Klotz S, Brandl R (2001) Plant and insect diversity along a pollution gradient: understanding species richness across trophic levels. Biodivers Conserv 10:1497–1511. https://doi.org/10.1023/A:1011815325503. (PMID: 10.1023/A:1011815325503)
      Braun-Blanquet J, Roussine N, Nègre R (1952) Les groupements végétaux de la France méditerranéenne. CNRS, Direction de la Carte des Groupements Végétaux de l’Afrique du Nord, Paris.
      Brose U (2003) Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity? Oecologia 135:407–413.
      Coulon J (2003) Les Bembidiina de la faune de France. Clés d’identification commentées (Coleoptera Carabidae Trechinae) (Première partie). Bull. Mens. Société Linn. Lyon 72:256–272.
      Dazy M, Béraud E, Cotelle S, Grévilliot F, Férard J-F, Masfaraud J-F (2009) Changes in plant communities along soil pollution gradients: responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere 77:376–383. https://doi.org/10.1016/j.chemosphere.2009.07.021. (PMID: 10.1016/j.chemosphere.2009.07.021)
      Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84:2522–2531. https://doi.org/10.1890/02-0370. (PMID: 10.1890/02-0370)
      Donker MH, Raedecker MH, Van Straalen NM (1996) The role of zinc regulation in the zinc tolerance mechanism of the terrestrial isopod Porcellio scaber. J Appl Ecol 33:955–964. https://doi.org/10.2307/2404677. (PMID: 10.2307/2404677)
      Douay F, Pruvot C, Roussel H, Ciesielski H, Fourrier H, Proix N, Waterlot C (2008) Contamination of urban soils in an area of Northern France polluted by dust emissions of two smelters. Water Air Soil Pollut 188:247–260. https://doi.org/10.1007/s11270-007-9541-7. (PMID: 10.1007/s11270-007-9541-7)
      Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Bidar G, Grand C, de Vaufleury A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the North of France. Sci Total Environ 407:5564–5577. https://doi.org/10.1016/j.scitotenv.2009.06.015. (PMID: 10.1016/j.scitotenv.2009.06.015)
      DRIRE (2003) L’Industrie au Regard de l’Environnement en 2002. Direction Régionale de l’Industrie, de la Recherche et de l’Environnement Nord-Pas de Calais, Douai, France. Ministère de l’Economie, des Finances et de l’Industrie.
      Drobne D (1997) Terrestrial isopods—a good choice for toxicity testing of pollutants in the terrestrial environment. Environ Toxicol Chem 16:1159–1164. https://doi.org/10.1002/etc.5620160610. (PMID: 10.1002/etc.5620160610)
      Dudman AA, Richards AJ (1997) Dandelions of Great Britain and Ireland, Handbook 9. Botanical Society of the British Isles, London.
      Eeva T, Sorvari J, Koivunen V (2004) Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ Pollut 132:533–539. https://doi.org/10.1016/j.envpol.2004.05.004. (PMID: 10.1016/j.envpol.2004.05.004)
      Eeva T, Belskii E, Gilyazov AS, Kozlov MV (2012) Pollution impacts on bird population density and species diversity at four non-ferrous smelter sites. Biol Conserv 150:33–41. https://doi.org/10.1016/j.biocon.2012.03.004. (PMID: 10.1016/j.biocon.2012.03.004)
      Eisler R (2000) Handbook of chemical risk assessment: health hazards to humans, plants, and animals. Volume 1, metals. Lewis, Boca Raton.
      EMEP 2013 Long term changes of heavy metal transboundary pollution of the environment (1990-2010) (No. 2/2013).
      Forel J, Leplat J (2001) Faune des carabiques de France. Magellanes, Andrésy.
      Fraser SE, Dytham C, Mayhew PJ (2007) Determinants of parasitoid abundance and diversity in woodland habitats. J Appl Ecol 44:352–361.
      Fritsch C, Giraudoux P, Cœurdassier M, Douay F, Raoul F, Pruvot C, Waterlot C, de Vaufleury A, Scheifler R (2010) Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere 81:141–155. https://doi.org/10.1016/j.chemosphere.2010.06.075. (PMID: 10.1016/j.chemosphere.2010.06.075)
      Fritsch C, Cœurdassier M, Giraudoux P, Raoul F, Douay F, Rieffel D, de Vaufleury A, Scheifler R (2011) Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. PLoS One 6:e20682. https://doi.org/10.1371/journal.pone.0020682. (PMID: 10.1371/journal.pone.0020682)
      Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414.
      Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. Chemosphere 41:15–23.
      Greenslade PJM (1964) Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J Anim Ecol 33:301. https://doi.org/10.2307/2632. (PMID: 10.2307/2632)
      Grelle C, Fabre M-C, Leprêtre A, Descamps M (2000) Myriapod and isopod communities in soils contaminated by heavy metals in northern France. Eur J Soil Sci 51:425–433.
      Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci Total Environ 636:299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235. (PMID: 10.1016/j.scitotenv.2018.04.235)
      Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JM (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35.
      Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039. https://doi.org/10.1111/j.1461-0248.2009.01356.x. (PMID: 10.1111/j.1461-0248.2009.01356.x)
      He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J (2019) Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci 75:14–39. https://doi.org/10.1016/j.jes.2018.05.023. (PMID: 10.1016/j.jes.2018.05.023)
      Hertzog LR, Meyer ST, Weisser WW, Ebeling A (2016) Experimental manipulation of grassland plant diversity induces complex shifts in aboveground arthropod diversity. PLoS One 11:e0148768. https://doi.org/10.1371/journal.pone.0148768. (PMID: 10.1371/journal.pone.0148768)
      Hertzog LR, Ebeling A, Weisser WW, Meyer ST (2017) Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8:e01990. https://doi.org/10.1002/ecs2.1990. (PMID: 10.1002/ecs2.1990)
      Hirao T, Murakami M, Kashizaki A (2009) Importance of the understory stratum to entomofaunal diversity in a temperate deciduous forest. Ecol Res 24:263–272. https://doi.org/10.1007/s11284-008-0502-4. (PMID: 10.1007/s11284-008-0502-4)
      Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London.
      Hopkin SP (1990) Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber. J Appl Ecol 27:460–474. https://doi.org/10.2307/2404294. (PMID: 10.2307/2404294)
      Hopkin SP, Martin MH (1982) The distribution of zinc, cadmium, lead and copper within the woodlouse Oniscus asellus (Crustacea, Isopoda). Oecologia 54:227–232.
      Hopkin SP, Jones DT, Dietrich D (1993) The isopod Porcellio scaber as a monitor of the bioavailability of metals in terrestrial ecosystems: towards a global “woodlouse watch” scheme. Sci Total Environ 134:357–365. https://doi.org/10.1016/S0048-9697(05)80036-1. (PMID: 10.1016/S0048-9697(05)80036-1)
      Humphrey JW, Hawes C, Peace AJ, Ferris-Kaan R, Jukes MR (1999) Relationships between insect diversity and habitat characteristics in plantation forests. For Ecol Manag 113:11–21.
      Hussein MA, Obuid-Allah AH, Mohammad AH, Scott-Fordsmand JJ, Abd El-Wakeil KF (2006) Seasonal variation in heavy metal accumulation in subtropical population of the terrestrial isopod, Porcellio laevis. Ecotoxicol Environ Saf 63:168–174. https://doi.org/10.1016/j.ecoenv.2005.01.005. (PMID: 10.1016/j.ecoenv.2005.01.005)
      Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159.
      Jeannel R (1941) Coléoptères carabiques, Faune de France. Librairie de la faculté des sciences, Paris.
      Jost L (2006) Entropy and diversity. Oikos 113:363–375.
      Kirk WDJ (1984) Ecologically selective coloured traps. Ecol Entomol 9:35–41.
      Knops JM, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293.
      Koivula M, Punttila P, Haila Y, Niemelä J (1999) Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22:424–435.
      Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125:271–282. https://doi.org/10.1007/s004420000450. (PMID: 10.1007/s004420000450)
      Lambinon J, Delvosalle L, Duvigneaud J (2004) Nouvelle flore de la Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des Régions voisines, 5th edn. Jardin botanique national de Belgique, Meise.
      Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat JP, Urmi E, Vust M, Wohlgemuth T (2010) Floria Indicativa: ecological indicator values and biological attributes of the flora of Switzerland and the Alps. Haupt Verlag, Bern.
      Leather SR (2005) Insect sampling in forest ecosystems, Methods in ecology. Blackwell Pub, Malden.
      Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity: replacement and richness difference components. Glob Ecol Biogeogr 23:1324–1334. https://doi.org/10.1111/geb.12207. (PMID: 10.1111/geb.12207)
      Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963. https://doi.org/10.1111/ele.12141. (PMID: 10.1111/ele.12141)
      Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450.
      Melbourne BA (1999) Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Aust Ecol 24:228–239.
      Migliorini M, Pigino G, Bianchi N, Bernini F, Leonzio C (2004) The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ Pollut 129:331–340. https://doi.org/10.1016/j.envpol.2003.09.025. (PMID: 10.1016/j.envpol.2003.09.025)
      Mora F 2002 Contribution au suivi des variations spatio-temporelles de la fraction circulante des peuplements d’invertébrés épigés en système forestier caducifolié européen (massif de Chaux, France, Doubs et Jura). Besançon.
      Nahmani J, Lavelle P (2002) Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. Eur J Soil Biol 38:297–300.
      Nahmani J, Rossi J-P (2003) Soil macroinvertebrates as indicators of pollution by heavy metals. C R Biol 326:295–303. https://doi.org/10.1016/S1631-0691(03)00070-2. (PMID: 10.1016/S1631-0691(03)00070-2)
      Niemelä J, Spence JR, Spence DH (1992) Habitat associations and seasonal activity of ground-beetles (Coleoptera, Carabidae) in Central Alberta. Can Entomol 124:521–540. https://doi.org/10.4039/Ent124521-3. (PMID: 10.4039/Ent124521-3)
      Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2014) Handbook on the toxicology of metals, 4th edn. Academic Press, London.
      Odendaal JP, Reinecke AJ (1999) Short-term toxicological effects of cadmium on the woodlouse, Porcellio laevis (Crustacea, lsopoda). Ecotoxicol Environ Saf 43:30–34.
      Odum EP (1985) Trends expected in stressed ecosystems. Bioscience 35:419–422.
      Paoletti MG, Iovane E, Cortese M (1988) Pedofauna bioindicators and heavy metals in five agroecosystems in north-east Italy. Rev Écol Biol Sol 25:33–58.
      Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625.
      Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98:169–181. https://doi.org/10.1016/S0167-8809(03)00079-3. (PMID: 10.1016/S0167-8809(03)00079-3)
      Prather RM, Kaspari M (2019) Plants regulate grassland arthropod communities through biomass, quality, and habitat heterogeneity. Ecosphere 10:e02909. https://doi.org/10.1002/ecs2.2909. (PMID: 10.1002/ecs2.2909)
      Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. https://doi.org/10.1016/S0160-4120(02)00152-6. (PMID: 10.1016/S0160-4120(02)00152-6)
      Read HJ, Wheater CP, Martin MH (1987) Aspects of the ecology of Carabidae (Coleoptera) from woodlands polluted by heavy metals. Environ Pollut 48:61–76.
      Read HJ, Martin MH, Rayner JMV (1998) Invertebrates in woodlands polluted by heavy metals—an evaluation using canonical correspondence analysis. Water Air Soil Pollut 106:17–42. https://doi.org/10.1023/A:1004917829355. (PMID: 10.1023/A:1004917829355)
      Rodriguez-Saona CR, Byers JA, Schiffhauer D (2012) Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera: Cicadellidae) and non-target arthropods in cranberry bogs. Crop Prot 40:132–144. https://doi.org/10.1016/j.cropro.2012.05.005. (PMID: 10.1016/j.cropro.2012.05.005)
      Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae). Ecol Monogr 43:95–124.
      Rzanny M, Kuu A, Voigt W (2013) Bottom–up and top–down forces structuring consumer communities in an experimental grassland. Oikos 122:967–976. https://doi.org/10.1111/j.1600-0706.2012.00114.x. (PMID: 10.1111/j.1600-0706.2012.00114.x)
      Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze E-D, Roscher C, Weigelt A, Allan E, Beßler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556. https://doi.org/10.1038/nature09492. (PMID: 10.1038/nature09492)
      Scherber C, Vockenhuber EA, Stark A, Meyer H, Tscharntke T (2014) Effects of tree and herb biodiversity on Diptera, a hyperdiverse insect order. Oecologia 174:1387–1400. https://doi.org/10.1007/s00442-013-2865-7. (PMID: 10.1007/s00442-013-2865-7)
      Schuldt A, Fahrenholz N, Brauns M, Migge-Kleian S, Platner C, Schaefer M (2008) Communities of ground-living spiders in deciduous forests: does tree species diversity matter? Biodivers Conserv 17:1267–1284. https://doi.org/10.1007/s10531-008-9330-7. (PMID: 10.1007/s10531-008-9330-7)
      Schuldt A, Both S, Bruelheide H, Härdtle W, Schmid B, Zhou H, Assmann T (2011) Predator diversity and abundance provide little support for the enemies hypothesis in forests of high tree diversity. PLoS One 6:e22905. https://doi.org/10.1371/journal.pone.0022905. (PMID: 10.1371/journal.pone.0022905)
      Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070.
      Sobek S, Tscharntke T, Scherber C, Schiele S, Steffan-Dewenter I (2009) Canopy vs. understory: does tree diversity affect bee and wasp communities and their natural enemies across forest strata? For Ecol Manag 258:609–615.
      Sperber CF, Nakayama K, Valverde MJ, de Siqueira Neves F (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251. https://doi.org/10.1016/j.baae.2004.04.001. (PMID: 10.1016/j.baae.2004.04.001)
      Spurgeon DJ, Hopkin SP (1996) The effects of metal contamination on earthworm populations. Appl Soil Ecol 4:147–160.
      Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ Pollut 107:377–389.
      Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194.
      Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C (2007) Référentiel pédo-géochimique du Nord-Pas de Calais - Méthode et principaux résultats. Etude Gest Sols 14:153–168.
      Storm GL, Yahner RH, Bellis ED (1993) Vertebrate abundance and wildlife habitat suitability near the Palmerton zinc smelters, Pennsylvania. Arch Environ Contam Toxicol 25:428–437. https://doi.org/10.1007/BF00214331. (PMID: 10.1007/BF00214331)
      Strandberg B, Axelsen JA, Pedersen MB, Jensen J, Attrill MJ (2006) Effect of a copper gradient on plant community structure. Environ Toxicol Chem 25:743–753.
      Trautner J, Geigenmueller K (1987) Tiger beetles, ground beetles (illustrated key to the Cicindelidae and Carabidae of Europe). Joseph Margraf, Aichtal.
      Uetz GW, Unzicker JD (1976) Pitfall trapping in ecological studies of wandering spiders. J Arachnol 3:101–111.
      Vehviläinen H, Koricheva J, Ruohomäki K (2008) Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117:935–943.
      Vidic T, Jogan N, Drobne D, Vilhar B (2006) Natural revegetation in the vicinity of the former lead smelter in Žerjav, Slovenia. Environ Sci Technol 40:4119–4125.
      Visioli G, Menta C, Gardi C, Conti FD (2013) Metal toxicity and biodiversity in serpentine soils: application of bioassay tests and microarthropod index. Chemosphere 90:1267–1273. https://doi.org/10.1016/j.chemosphere.2012.09.081. (PMID: 10.1016/j.chemosphere.2012.09.081)
      Walker CH, Hopkin SP, Sibly RM, Peakall DB (2012) Principles of ecotoxicology, 4th edn. CRC Press, Boca Raton.
      Zidar P, Drobne D, Štrus J, Van Gestel CAM, Donker M (2004) Food selection as a means of Cu intake reduction in the terrestrial isopod Porcellio scaber (Crustacea, Isopoda). Appl Soil Ecol 25:257–265. https://doi.org/10.1016/j.apsoil.2003.09.005. (PMID: 10.1016/j.apsoil.2003.09.005)
      Zimmer M, Topp W (2000) Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). J Anim Ecol 69:1071–1082.
      Zimmer M, Brauckmann H-J, Broll G, Topp W (2000) Correspondence analytical evaluation of factors that influence soil macro-arthropod distribution in abandoned grassland. Pedobiologia 44:695–704.
      Zvereva EL, Kozlov MV (2010) Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ Sci Pollut Res 17:297–311. https://doi.org/10.1007/s11356-009-0138-0. (PMID: 10.1007/s11356-009-0138-0)
      Zvereva EL, Kozlov MV (2012) Changes in the abundance of vascular plants under the impact of industrial air pollution: a meta-analysis. Water Air Soil Pollut 223:2589–2599. https://doi.org/10.1007/s11270-011-1050-z. (PMID: 10.1007/s11270-011-1050-z)
      Zvereva EL, Toivonen E, Kozlov MV (2008) Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob Ecol Biogeogr 17:305–319. https://doi.org/10.1111/j.1466-8238.2007.00366.x. (PMID: 10.1111/j.1466-8238.2007.00366.x)
    • Grant Information:
      contract No.1172C0030 Agence De l'Environnement et de la Maîtrise de l'Energie (FR); order No.12000921 Conseil Régional du Nord-Pas de Calais (FR); order No.14001044 Conseil Régional du Nord-Pas de Calais (FR); contract No. 2015C-06107 Conseil régional de Bourgogne-Franche-Comté
    • Contributed Indexing:
      Keywords: Alpha diversity; Beta diversity; Community composition; Plant-invertebrate interaction; Trace metals
    • Accession Number:
      0 (Soil)
    • Publication Date:
      Date Created: 20210811 Date Completed: 20220110 Latest Revision: 20220110
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s11356-021-15811-4
    • Accession Number:
      34378128