The Galápagos Islands: biogeographic patterns and geology.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Heads M;Heads M; Grehan JR; Grehan JR
  • Source:
    Biological reviews of the Cambridge Philosophical Society [Biol Rev Camb Philos Soc] 2021 Aug; Vol. 96 (4), pp. 1160-1185. Date of Electronic Publication: 2021 Mar 21.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Cambridge University Press Country of Publication: England NLM ID: 0414576 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-185X (Electronic) Linking ISSN: 00063231 NLM ISO Abbreviation: Biol Rev Camb Philos Soc Subsets: MEDLINE
    • Publication Information:
      Original Publication: London, Cambridge University Press.
    • Subject Terms:
    • Abstract:
      In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.
      (© 2021 Cambridge Philosophical Society.)
    • References:
      *Ahn, K. & Ashe, J. S. (1996). A revision of Rothium Moore and Legner (Coleoptera: Staphylinidae: Aleocharinae) with a discussion of its phylogenetic relationships. Journal of the Kansas Entomological Society 69, 234-256.
      Andrus, N., Tye, A., Nesom, G., Bogler, D., Lewis, C., Noyes, R., Jarmillo, P. & Francisco-Ortega, J. (2009). Phylogenetics of Darwiniothamnus (Asteraceae: Astereae) - molecular evidence for multiple origins in the endemic flora of the Galápagos Islands. Journal of Biogeography 36, 1055-1069.
      *Austin, J. T., Bretagnolle, V. & Pasquet, E. (2004). A global molecular phylogeny of the small Puffinus shearwaters and implications for systematics of the little-Audubon's shearwater complex. Auk 121, 847-864.
      Bacon, C. D., Velásquez-Puentes, F. J., Hinojosa, L. F., Schwartz, T., Oxelman, B., Pfeil, B., Arroyo, M. T., Wanntorp, L. & Antonelli, A. (2018). Evolutionary persistence in Gunnera and the contribution of southern plant groups to the tropical Andes biodiversity hotspot. PeerJ 6, e4388.
      Baker, A. J., Pereira, S. L. & Paton, T. A. (2007). Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters 3, 205-210.
      Barnard, J. L. (1991). Amphipoda of the Galápagos Islands. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 193-208. Springer, New York.
      Barthlott, W., Burstedde, K., Geffert, J. L., Ibisch, P. L., Korotkova, N., Rafiqpoor, D., Stein, A. & Mutke, J. (2015). Biogeography and Biodiversity of Cacti. Universitätsverlag Isensee, Oldenburg.
      Baudino, R. & Hermoza, W. (2014). Subduction consequences along the Andean margin: thermal and topographic signature of an ancient ridge subduction in the Marañón Basin of Perú. Geologica Acta 12, 287-306.
      Benavides, E., Baum, R., Snell, H. M., Snell, H. L. & Sites, J. W. Jr. (2009). Island biogeography of Galápagos lava lizards (Tropiduridae: Microlophus): species diversity and colonization of the archipelago. Evolution 63, 1606-1626.
      Bergmann, P. J. & Russell, A. P. (2007). Systematics and biogeography of the widespread Neotropical gekkonid genus Thecadactylus (Squamata), with the description of a new cryptic species. Zoological Journal of the Linnean Society 149, 339-370.
      *Borkent, A. (1991). The Ceratopogonidae (Diptera) of the Galápagos Islands, Ecuador with a discussion of their phylogenetic relationships and zoogeographic origins. Insect Systematics and Evolution 22, 97-122.
      *Boxshall, G. A. & Iliffe, T. M. (1987). Three new genera and five new species of misophrioid copepods (Crustacea) from anchialine caves on Indo-West Pacific and North Atlantic islands. Zoological Journal of the Linnean Society 91, 223-252.
      Brace, S., Turvey, S. T., Weksler, M., Hoogland, M. L. P. & Barnes, I. (2015). Unexpected evolutionary diversity in a recently extinct Caribbean mammal radiation. Proceedings of the Royal Society B 282, 20142371.
      Briggs, J. C. (1974). Operation of marine zoogeographic barriers. Systematic Zoology 23, 248-256.
      Brooke, M. (2004). Albatrosses and Petrels across the World. Oxford University Press, Oxford.
      Buchs, D. M., Hoernle, K., Hauff, F. & Baumgartner, P. O. (2016). Evidence from accreted seamounts for a depleted component in the early Galapagos plume. Geology 44, 383-386.
      Buchs, D. M., Kerr, A. C., Brims, J. C., Zapata-Villada, J. P., Correa-Restrepo, T. & Rodríguez, G. (2018). Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth and Planetary Science Letters 499, 62-73.
      Burns, K. J., Unitt, P. & Mason, N. A. (2016). A genus-level classification of the family Thraupidae (Class Aves: order Passeriformes). Zootaxa 4088, 329-354.
      *Caccone, A., Gentile, G., Gibbs, J. P., Fritts, T. H., Snell, H. L., Betts, J. & Powell, J. R. (2002). Phylogeography and history of giant Galápagos tortoises. Evolution 56, 2052-2066.
      *Carbajal-Lopez, A., Rosende-Pereiro, A. & Corgos, A. (2017). First record and range extension of the Galápagos slipper lobster, Scyllarides astori (Decapoda, Scyllaridae) in the Central Pacific coast of Mexico mainland. Zootaxa 4277, 285-288.
      *Carboneras, C. (1992). Family Hydrobatidae (storm-petrels). In Handbook of the Birds of the World (eds J. Hoyo, A. Elliot and J. Sargatal), pp. 258-271. Lynx, Barcelona.
      Carmi, O., Witt, C. C., Jaramillo, A. & Dumbacher, J. P. (2016). Phylogeography of the vermilion flycatcher species complex: multiple speciation events, shifts in migratory behavior, and an apparent extinction of a Galápagos-endemic bird species. Molecular Phylogenetics and Evolution 103, 152-173.
      Carr, L. M., Mclenachan, P. A., Waddell, P. J., Gemmell, N. J. & Penny, D. (2015). Analyses of the mitochondrial genome of Leiopelma hochstetteri argues against the full drowning of New Zealand. Journal of Biogeography 42, 1066-1076.
      Castañeda-Rico, S., Johnson, S. A., Clement, S. A., Dowler, R. C., Maldonado, J. E. & Edwards, C. W. (2019). Insights into the evolutionary and demographic history of the extant endemic rodents of the Galápagos Islands. Therya 10(3), 213-228.
      *Chambers, G. K., Moeke, C., Steel, R. & Trueman, J. W. (2009). Phylogenetic analysis of the 24 named albatross taxa based on full mitochondrial cytochrome b DNA sequences. Notornis 56, 82-94.
      *Chambers, S. M. (1991). Biogeography of Galápagos land snails. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 307-326. Springer, New York.
      *Chani-Posse, D. E. & Maus, M. (2008). Systematic revision and cladistic analysis of the South American genus Endeius Coiffait and Sáiz (Coleoptera: Staphylinidae). Insect Systematics and Evolution 39, 381-406.
      Chaves, J. A., Parker, P. G. & Smith, T. B. (2012). Origin and population history of a recent colonizer, the yellow warbler in Galápagos and Cocos Islands. Journal of Evolutionary Biology 25, 509-521.
      Christie, D. M., Duncan, R. A., Mcburney, A. R., Richards, M. A., White, W. M., Harpp, K. S. & Fox, C. G. (1992). Drowned islands downstream from the Galápagos hotspot imply extended speciation times. Nature 355, 246-248.
      Churchill, M., Boessenecker, R. W. & Clementz, M. (2014). Colonization of the southern hemisphere by fur seals and sea lions (Carnivora: Otariidae) revealed by combined evidence phylogenetic and Bayesian biogeographical analysis. Zoological Journal of the Linnean Society 172, 200-225.
      Clennett, E. J., Sigloch, K., Mihalynuk, M. G., Seton, M., Henderson, M. A., Hosseini, K., Mohammadzaheri, A., Johnston, S. T. & Müller, R. D. (2020). A quantitative tomotectonic plate reconstruction of western North America and the eastern Pacific Basin. Geochemistry, Geophysics, Geosystems 21, e2020GC009117.
      Cole, T. L., Ksepka, D. T., Mitchell, K. J., Tennyson, A. J., Thomas, D. B., Pan, H., Zhang, G., Rawlence, N. J., Wood, J. R., Bover, P., Bouzat, J. L., Cooper, A., Fiddaman, S. R., Hart, T., Miller, G., Ryan, P. G., Shepherd, L. D., Wilmshurst, J. M. & Waters, J. M. (2019). Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation. Molecular Biology and Evolution 36, 784-797.
      *Cooke, C. M. & Kondo, Y. (1960). Revision of Tornatellinidae and Achatinellidae. Bernice P. Bishop Museum Bulletin 221, 1-303.
      *Dal Forno, M., Bungartz, F., Yánez-Ayabaca, A., Lücking, R. & Lawrey, J. D. (2017). High levels of endemism among Galápagos basidiolichens. Fungal Diversity 85, 45-73.
      Darlington, P. J. Jr. (1957). Zoogeography: The Geographical Distribution of Animals. Wiley, New York.
      Davis, D. R. (1994). Neotropical Tineidae, V: the Tineidae of Cocos Island, Costa Rica (Lepidoptera: Tineoidea). Proceedings of the Entomological Society of Washington 96, 735-748.
      Daza, J. D., Gamble, T., Abdala, V. & Bauer, A. M. (2017). Cool geckos: does plesiomorphy explain morphological similarities between geckos from the southern cone? Journal of Herpetology 51, 330-342.
      De Baets, K., Antonelli, A. & Donoghue, P. C. J. (2016). Tectonic blocks and molecular clocks. Philosophical Transactions of the Royal Society of London, Series B 371, 20160098.
      D'elía, G., Hanson, J. D., Mauldin, M. R., Teta, P. & Pardiñas, Y. F. J. (2015). Molecular systematics of South American marsh rats of the genus Holochilus (Muroidea, Cricetidae, Sigmodontinae). Journal of Mammalogy 96, 1081-1094.
      *Delprete, P. G. (1995). Systematic study of the genus Delilia (Asteraceae, Heliantheae). Plant Systematics and Evolution 194, 111-122.
      *De Sena Oliveira, I., Read, V. M. S. J. & Mayer, G. (2012). A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211, 1-70.
      Dillon, M. O., Tu, T., Xie, L., Quipuscoa Silvestre, V. & Wen, J. (2009). Biogeographic diversification in Nolana (Solanaceae), a ubiquitous member of the Atacama and Peruvian deserts along the western coast of South America. Journal of Systematics and Evolution 47, 457-476.
      Dixon, J. R. (1964). The systematics and distribution of the lizard genus Phyllodactylus of North and Central America. New Mexico State University Research Center, Science Bulletin 64, 1-139.
      Dixon, J. R. & Huey, R. B. (1970). Systematics of the lizards of the gekkonid genus Phyllodactylus of mainland South America. Natural History Museum of Los Angeles County Contributions in Science 192, 1-78.
      Do Prado, J. R. & Percequillo, A. R. (2017). Systematic studies of the genus Aegialomys Weksler et al., 2006 (Rodentia: Cricetidae: Sigmodontinae): geographic variation, species delimitation, and biogeography. Journal of Mammalian Evolution 25, 71-118.
      Dos Reis, M., Donoghue, P. C. J. & Yang, Z. (2016). Bayesian molecular clock dating of species divergences in the genomics era. Nature Reviews Genetics 17, 71-80.
      *Ekman, S. (1953). Zoogeography of the Sea. Sidgwick and Jackson, London.
      *Eliasson, U. H. (2004). The evolutionary patterns of the plant family Amaranthaceae on the Galápagos and Hawaiian Islands. Journal of the Torrey Botanical Society 131, 105-109.
      *Fehlberg, S. D. & Ranker, T. A. (2007). Phylogeny and biogeography of Encelia (Asteraceae) in the Sonoran and Peninsular deserts based on multiple DNA sequences. Systematic Botany 32, 692-699.
      Fernández-Mazuecos, M., Vargas, P., Mccauley, R. A., Monjas, D., Otero, A., Chaves, J. A., Guevara Andino, J. E. & Rivas-Torres, G. (2020). The radiation of Darwin's giant daisies in the Galápagos Islands. Current Biology 30, 4989-4998.e7. https://doi.org/10.1016/j.cub.2020.09.019.
      *Forest, F., Chase, M. W., Persson, C., Crane, P. R. & Hawkins, J. A. (2007). The role of biotic and abiotic factors in evolution of ant dispersal in the milkwort family (Polygalaceae). Evolution 61, 1675-1694.
      Francke, O. F. & Soleglad, M. E. (1981). The family Iuridae Thorell (Arachnida, Scorpiones). Journal of Arachnology 9, 233-258.
      *Frias-Soler, R., Tindle, E., Espinoza Lopez, G., Blomberg, S., Studer-Thiersch, A., Wink, M. & Tindle, R. W. (2014). Genetic and phenotypic evidence supports evolutionary divergence of the American flamingo (Phoenicopterus ruber) population in the Galápagos Islands. Waterbirds 37, 349-468.
      *Friedlander, A. M., Ballesteros, E., Caselle, J. E., Gaymer, C. F., Palma, A. T., Petit, I., Varas, E., Muñoz Wilson, A. & Sal, E. (2016). Marine biodiversity in Juan Fernández and Desventuradas Islands, Chile: global endemism hotspots. PLoS One 11(1), e0145059.
      Fukuda, T., Yokoyama, J. & Ohashi, H. (2001). Phylogeny and biogeography of the genus Lycium (Solanaceae): inferences from chloroplast DNA sequences. Molecular Phylogenetics and Evolution 19, 246-258.
      Funk, E. R. & Burns, K. J. (2018). Biogeographic origins of Darwin's finches (Thraupidae: Coerebinae). Auk 135, 561-571.
      *García-Machado, E., Hernández, D., García-Debrás, A., Chevalier-Monteagudo, P., Metcalfe, C., Bernatchez, L. & Casane, D. (2011). Molecular phylogeny and phylogeography of the Cuban cave-fishes of the genus Lucifuga: evidence for cryptic allopatric diversity. Molecular Phylogenetics and Evolution 61, 470-483.
      *García Madrigal, M. S. (2007). Annotated checklist of the amphipods (Peracarida: Amphipoda) from the tropical eastern Pacific. Contributions to the Study of East Pacific Crustaceans 4, 63-193.
      *Garrido, O. H. (2007). Subespecie nueva de Asio dominguensis para Cuba, con comentarios sobre Asio flammeus (Aves: Strigidae). Solenodon 6, 70-78.
      *Garth, J. S. (1991). Taxonomy, distribution, and ecology of Galápagos Brachyura. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 123-146. Springer, New York.
      Geist, D., Snell, H., Snell, H., Goddard, C. & Kurz, M. (2014). Paleogeography of the Galápagos Islands and biogeographical implications. In The Galápagos: A Natural Laboratory for the Earth Sciences (eds K. S. Harpp, E. Mittelstaedt, N. D'Ozouville and D. W. Graham), pp. 145-166. John Wiley & Sons, New York.
      *Gentile, G., Fabiani, A., Marquez, C., Snell, H. L., Snell, H. M., Tapia, W. & Sbordoni, V. (2009). An overlooked pink species of land iguana in the Galápagos. Proceedings of the National Academy of Sciences USA 106, 507-511.
      *Giribet, G., Buckman-Young, R. S., Costa, C. S., Baker, C. M., Benavides, L. R., Branstetter, M. G., Daniels, S. R. & Pinto-Da-Rocha, R. (2018). The ‘Peripatos’ in Eurogondwana? Lack of evidence that south-east Asian onychophorans walked through Europe. Invertebrate Systematics 32, 842-865.
      *Gosliner, T. M. (1991). The opisthobranch gastropod fauna of the Galápagos Islands. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 281-306. Springer, New York.
      Grande, L. (2016). Donn Rosen and the perils of paleontology. In Assumptions Inhibiting Progress in Comparative Biology (eds B. I. Crother and L. R. Parenti), pp. 159-168.Taylor and Francis, Boca Raton.
      Grove, J. S. & Lavenberg, R. J. (1997). The Fishes of the Galápagos Islands. Stanford University Press, Stanford.
      *Grover, C. E., Gallagher, J. P., Jareczek, J. J., Page, J. T., Udall, J. A., Gore, M. A. & Wendel, J. F. (2015a). Re-evaluating the phylogeny of allopolyploid Gossypium L. Molecular Phylogenetics and Evolution 92, 45-52.
      *Grover, C. E., Zhu, X., Grupp, K. K., Jareczek, J. J., Gallagher, J. P., Szadkowski, E., Seijo, J. G. & Wendel, J. F. (2015b). Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genetic Resources and Crop Evolution 62, 103-114.
      Gunter, N. L., Monteith, G. B., Cameron, S. L. & Weir, T. A. (2018). Evidence from Australian Mesic zone dung beetles supports their Gondwanan origin and Mesozoic diversification of the Scarabaeinae. Insect Systematics and Evolution 50, 162-188.
      Gutscher, M.-A., Olivet, J. -L., Aslanian, D., Eissen, J.-P. & Maury, R. (1999). The “lost Inca plateau”: cause of flat subduction beneath Peru? Earth and Planetary Science Letters 171, 335-341.
      *Guzmán, B., Heleno, R., Nogales, M., Simbaña, W., Traveset, A. & Vargas, P. (2017a). Evolutionary history of the endangered shrub snapdragon (Galvezia leucantha) of the Galápagos Islands. Diversity and Distribution 23, 247-260.
      Guzmán, N. V., Pietrokovsky, S. M., Cigliano, M. M. & Confalonieri, V. A. (2017b). Unraveling the diversification history of grasshoppers belonging to the “Trimerotropis pallidipennis” (Oedipodinae: Acrididae) species group: a hotspot of biodiversity in the Central Andes. PeerJ 5, e3835.
      *Hajdu, E. & Desqueyroux-Fandez, R. (2008). A reassessment of the phylogeny and biogeography of Rhabderemia Topsent, 1890 (Rhabderemiidae, Poecilosclerida, Demospongiae). Revue Suisse de Zoologie 115, 377-395.
      *Harvey, A. W. (1991). Biogeographic patterns of the Galápagos porcelain crab fauna. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 157-172. Springer, New York.
      Hauenschild, F., Favre, A., Michalak, I. & Muellner-Riehl, A. N. (2018). The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). Journal of Biogeography 45, 2669-2677.
      Heads, M. (2012). Molecular Panbiogeography of the Tropics. University of California Press, Berkeley.
      Heads, M. (2014). Biogeography of Australasia: A Molecular Analysis. Cambridge University Press, Cambridge.
      Heads, M. (2015). The relationship between biogeography and ecology: envelopes, models, predictions. Biological Journal of the Linnean Society 115, 456-468.
      Heads, M. (2019). Biogeography and ecology in a pantropical family, the Meliaceae. Gardens' Bulletin, Singapore 71(Suppl. 2), 335-461.
      *Hearn, A. (2016). Shark migrations. In Galápagos: Preserving Darwin's Legacy, 2nd Edition (ed. T. Roy), pp. 90-97. Bloomsbury, London.
      Herrera, J. P. (2017). Primate diversification inferred from phylogenies and fossils. Evolution 71, 2845-2857.
      Ho, S. & Duchêne, S. (2014). Molecular-clock methods for estimating evolutionary rates and timescales. Molecular Ecology 23, 5947-5965.
      Ho, S. Y. W., Tong, K. J., Foster, C. S. P., Ritchie, A. M., Lo, N. & Crisp, M. D. (2015). Biogeographic calibrations for the molecular clock. Biology Letters 11, 20150194.
      Hoernle, K., Van Den Bogaard, P., Werner, R., Lissina, B., Hauff, F., Alvarado, G. & Garbe-Schönberg, D. (2002). Missing history (16-71 Ma) of the Galápagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology 30, 795-798.
      Hoernle, K., Hauff, F. & Van Den Bogaard, P. (2004). 70 m.y. history (139-69 Ma) for the Caribbean large igneous province. Geology 32, 697-700.
      Holden, J. C. & Dietz, R. S. (1972). Galápagos gore, NazCoPac triple junction and Carnegie/Cocos ridges. Nature 235, 266-269.
      *Holt, D. W., Berkley, R., Deppe, C., Enriquez-Rocha, P. L., Olsen, P. D., Petersen, J. L., Rangel-Salazar, J. L., Segars, K. P. & Wood, K. L. (1999). Strigidae. In Handbook of the Birds of the World. Volume 5: Barn Owls to Hummingbirds (eds J.Del Hoyo, A. Elliott and J. Sargatal), pp. 153-242. Lynx Edicions, Barcelona.
      Huey, R. B. (1975). A new gecko from Malpelo Island (Sauria: Gekkonidae: Phyllodactylus). Smithsonian Contributions in Zoology 196, 44-46.
      Husemann, M., Guzmán, N. V., Danley, P. D., Cigliano, M. M. & Confalonieri, V. A. (2013). Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): deep divergence across the Americas. Journal of Biogeography 40, 261-273.
      Husemann, M., Habel, J. C., Namkung, S., Hochkirch, A., Otte, D. & Danley, P. D. (2015). Molecular evidence for an Old World origin of Galápagos and Caribbean band-winged grasshoppers (Acrididae: Oedipodinae: Sphingonotus). PLoS One 10, 1-14.
      *Iliffe, T. M. (1991). Anchialine fauna of the Galápagos Islands. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 209-234. Springer, New York.
      James, M. J. (1991). Charles Darwin's contribution to the molluscan fauna of the Galápagos Islands: historical perspective on endemicity and biogeography. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 327-344. Springer, New York.
      Johnson, K. P. & Clayton, D. H. (2000). A molecular phylogeny of the dove genus Zenaida: mitochondrial and nuclear DNA sequences. Condor 102, 864-870.
      *Johnston, M. C. (1974). Revision of Scutia (Rhamnaceae). Bulletin of the Torrey Botanical Club 101, 64-72.
      *Kao, T. T., Pryer, K. M., Turner, M. D., White, R. A. & Korall, P. (2015). Origins of the endemic scaly tree ferns on the Galápagos and Cocos Islands. International Journal of Plant Sciences 176, 869-879.
      *Katz, A. D., Taylor, S. J., Soto-Adames, F. N., Addison, A., Hoese, G. B., Sutton, M. R. & Toulkeridis, T. (2016). New records and new species of springtails (Collembola: Entomobryidae, Paronellidae) from lava tubes of the Galápagos Islands (Ecuador). Subterranean Biology 17, 77-120.
      Kay, E. A. (1991). The marine mollusks of the Galápagos: determinants of insular marine faunas. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 235-252. Springer, New York.
      Kehlmaier, C., Barlow, A., Hastings, A. K., Vamberger, M., Paijmans, J. L. A., Steadman, D. W., Albury, N. A., Franz, R., Hofreiter, M. & Fritz, U. (2017). Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise Chelonoidis alburyorum. Proceedings of the Royal Society B 284, 2016-2235.
      Kennedy, M. & Page, R. D. M. (2002). Seabird supertrees: combining partial estimates of procellariiform phylogeny. Auk 119, 88-108.
      Kennedy, M. & Spencer, H. G. (2014). Classification of the cormorants of the world. Molecular Phylogenetics and Evolution 79, 249-257.
      *Kirkendall, L. R. & Jordal, B. H. (2006). The bark and ambrosia beetles (Curculionidae, Scolytinae) of Cocos Island, Costa Rica and the role of mating systems in island biogeography. Biological Journal of the Linnean Society 89, 729-743.
      *König, C., Weick, F. & Becking, J. H. (1999). Owls: A Guide to the Owls of the World. Pica Press, Mounfield.
      Landis, M. J. (2017). Biogeographic dating of speciation times using paleogeographically informed processes. Systematic Biology 66, 128-144.
      *Landry, B. (2016). Taxonomic revision of the Spilomelinae (Lepidoptera, Pyralidae s.l.) of the Galápagos Islands, Ecuador. Revue Suisse de Zoologie 123, 315-399.
      *Lanteri, A. A. (1992). Systematics, cladistics and biogeography of a new weevil genus, Galapaganus (Coleoptera: Curculionidae) from the Galápagos Islands, and coasts of Ecuador and Peru. Transactions of the American Entomological Society 118, 227-267.
      Leaché, A. D., Oaks, J. R., Ofori-Boateng, C. & Fujita, M. K. (2020). Comparative phylogeography of West African amphibians and reptiles. Evolution 74, 716-724.
      *Leistikow, A. (2001). Phylogeny and biogeography of South American Crinocheta, traditionally placed in the family “Philosciidae” (Crustacea: Isopoda: Oniscidea). Organisms Diversity Evolution 1, 239-240.
      Lendel, A. (2013). South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae). Dr. sc. Nat. Thesis: University of Zurich.
      *Lessios, H. A., Kessing, B. D., Robertson, D. R. & Paulay, G. (1999). Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53, 806-817.
      Levin, I. I. & Parker, P. G. (2012). Philopatry drives genetic differentiation in an Island archipelago: comparative population genetics of Galápagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor). Ecology and Evolution 2, 2775-2787.
      *Levin, R. A., Bernardello, G., Whiting, C. & Miller, J. S. (2011). A new generic circumscription in tribe Lycieae (Solanaceae). Taxon 60, 681-690.
      *Levin, R. A., Keyes, E. M. & Miller, J. S. (2015). Evolutionary relationships, gynodioecy, and polyploidy in the Galápagos endemic Lycium minimum (Solanaceae). International Journl of Plant Sciences 176, 197-210.
      Levin, R. A. & Miller, J. S. (2005). Relationships within tribe Lycieae (Solanaceae): paraphyly of Lycium and multiple origins of gender dimorphism. American Journal of Botany 92, 2044-2053.
      Lourenço, W. R. (1998). Panbiogéographie, les distributions disjointes et le concept de famille relictuelle chez les scorpions. Biogeographica 74, 133-144.
      Lovejoy, N. R., Mullen, S. P., Sword, G. A., Chapman, R. F. & Harrison, R. G. (2006). Ancient trans-Atlantic flight explains locust biogeography: molecular phylogenetics of Schistocerca. Proceedings of the Royal Society B 273, 767-774.
      Lovette, I. J., Arbogast, B. S., Currt, R. L., Zink, R. M., Botero, C. A., Sullivan, J. P., Talaba, A. L., Harris, R. B., Rubenstein, D. R. & Ricklefs, R. E. (2012). Phylogenetic relationships of the mockingbirds and thrashers (Aves: Mimidae). Molecular Phylogenetics and Evolution 63, 219-229.
      Lu, L., Fritsch, P. W., Bush, C. M., Wang, H., Kron, K. A. & Li, D. Z. (2019). Allopolyploidy in the wintergreen group of tribe Gaultherieae (Ericaceae) inferred from low-copy nuclear genes. Nordic Journal of Botany 37, e02077.
      *Macleod, A., Rodríguez, A., Vences, M., Orozco-Terwengel, P., García, C., Trillmich, F., Gentile, G., Caccone, A., Quezada, G. & Steinfartz, S. (2015). Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proceedings of the Royal Society B 282, 20150425.
      Maluf, L. Y. (1991). Echinoderm fauna of the Galápagos Islands. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 345-370. Springer, New York.
      *Marchant, S. & Higgins, P. J. (1990). Handbook of Australian, New Zealand and Antarctic Birds. Vol. 1, Ratites to Ducks. Oxford University Press, Oxford.
      *Marshall, S. A. (1997). A revision of the Sclerocoelus galapagensis group (Diptera: Sphaeroceridae: Limosininae). Insecta Mundi 11, 97-115.
      *Mathis, W. N. (1995). Shore flies of the Galápagos Islands (Diptera: Ephydridae). Annals of the Entomological Society of America 88, 627-640.
      Matzke, N. J. (2013). BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. CRAN: The Comprehensive R Archive Network, Berkeley. Electronic file available at http://CRAN.R-project.org/package=BioGeoBEARS.
      McCosker, J. E. & Rosenblatt, R. H. (2010). The fishes of the Galápagos archipelago: an update. Proceedings of the California Academy of Science 61(Suppl. II), 167-195.
      Miquel, S. E. & Herrera, H. W. (2014). Catalogue of terrestrial gastropods from Galápagos (except Bulimulidae and Succineidae) with description of a new species of Ambrosiella Odhner (Achatinellidae) (Mollusca: Gastropoda). Archiv für Molluskenkunde: International Journal of Malacology 143, 107-133.
      *Mohrig, W., Kauschke, E. & Broadley, A. (2019). Revision of black fungus gnat species (Diptera, Sciaridae) described from the Hawaiian islands by DE Hardy and WA Steffan, and a contribution to the knowledge of the sciarid fauna of the Galápagos Islands. Zootaxa 4590, 401-439.
      Moore, M. J., Tye, A. & Jansen, R. K. (2006). Patterns of long-distance dispersal in Tiquilia subg. Tiquilia (Boraginaceae): implications for the origins of amphitropical disjuncts and Galápagos Islands endemics. American Journal of Botany 93, 1163-1177.
      Munroe, T. A. & McCosker, J. E. (2001). Redescription of Symphurus diabolicus, a poorly-known, deepsea tonguefish (Pleuronectiformes: Cynoglossidae) from the Galápagos archipelago. Revista de Biologia Tropical 49(Suppl. 1), 187-198.
      Myers, C. W. & Cadle, J. E. (1994). A new genus for South American snakes related to Rhadinaea obtusa Cope (Colubridae) and resurrection of Taeniophallus Cope for the “Rhadinaea” brevirostris group. American Museum Novitates 3102, 1-33.
      Navarro-Zelasco, L.D. (2010). Tectonic Evolution of the Contaya Arch, Ucayali Basin, Peru. Masters Thesis: Texas A&M University, College Staion.
      Nerlich, R., Clark, S. R. & Bunge, H.-P. (2014). Reconstructing the link between the Galapagos hotspot and the Caribbean plateau. GeoResJ 1-2, 1-7.
      Nesom, G. L. (2010). Infrageneric classification of Verbena (Verbenaceae). Phyton 2010-11, 1-15.
      *Ogutcen, E. & Vamosi, J. C. (2016). A phylogenetic study of the tribe Antirrhineae: genome duplications and long-distance dispersals from the Old World to the New World. American Journal of Botany 103, 1071-1081.
      *Olmstead, R. G., Bohs, L., Migid, H. A., Santiago-Valentin, E., Garcia, V. F. & Collier, S. M. (2008). A molecular phylogeny of the Solanaceae. Taxon 57, 1159-1181.
      Orellana-Rovirosa, P. & Richards, M. (2018). Emergence/subsidence histories along the Carnegie and Cocos Ridges and their bearing upon biological speciation in the Galápagos. Geochemistry, Geophysics, Geosystems 19, 4099-4129.
      *Panero, J. L., Jansen, R. K. & Clevinger, J. A. (1999). Phylogenetic relationships of subtribe Ecliptinae (Asteraceae: Heliantheae) based on chloroplast DNA restriction site data. American Journal of Botany 86, 413-427.
      Patterson, S. A., Morris-Pocock, J. A. & Friesen, V. L. (2011). A multilocus phylogeny of the Sulidae (Aves: Pelecaniformes). Molecular Phylogenetics and Evolution 58, 181-191.
      *Pazmiño, D.A., Maes, G.E., Green, M.E., Simpfendorfer, C.A., Hoyos-Padilla, E.M., Duffy, C.J., Meyer, C.G., Kerwath, S.E., Salinas-De-León, P. & Van Herwerden, L. (2018). Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407-421.
      *Peck, S. B. (1990). Eyeless arthropods of the Galápagos Islands, Ecuador: composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago. Biotropica 22, 366-381.
      *Peck, S. B. (1994). Diversity and zoogeography of the non-oceanic Crustacea of the Galápagos Islands, Ecuador (excluding terrestrial Isopoda). Canadian Journal of Zoology 72, 54-69.
      Peck, S. B. (2001). Smaller Orders of Insects of the Galápagos Islands, Ecuador: Evolution, Ecology, and Diversity. NRC Research Press, Ottawa.
      *Peralta, I. E., Knapp, S. & Spooner, D. M. (2007). The taxonomy of tomatoes: a revision of wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst.) and their outgroup relatives (Solanum sections Juglandifolium (Rydb.) Child and Lycopersicoides (Child) Peralta). Systematic Botany Monographs 84, 1-186.
      Pereira, A. G., Sterli, J., Moreira, F. R. R. & Schrago, C. G. (2017). Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Molecular Phylogenetics and Evolution 113, 59-66.
      Pett, W. & Heath, T. A. (2020). Inferring the timescale of phylogenetic trees from fossil data. In Phylogenetics in the Genomic Era (eds C. Scornavacca, F. Delsuc and N. Galtier). Montpellier: Published by the authors. Electronic file available at https://hal.inria.fr/PGE/hal-02536361.
      *Pfingstl, T., Baumann, J., Lienhard, A. & Schatz, H. (2017). New Fortuyniidae and Selenoribatidae (Acari, Oribatida) from Bonaire (Lesser Antilles) and morphometric comparison between eastern Pacific and Caribbean populations of Fortuyniidae. Systematic and Applied Acarology 22, 2190-2217.
      *Pfingstl, T., Lienhard, A. & Baumann, J. (2019). New and cryptic species of intertidal mites (Acari, Oribatida) from the Western Caribbean-an integrative approach. International Journal of Acarology 45, 10-25.
      *Pfingstl, T. & Schatz, H. (2017). New littoral mite species (Acari, Oribatida, Fortuyniidae) from the Galápagos archipelago, with ecological and zoogeographical considerations. Zootaxa 4244, 39-64.
      Piñeros, V. J., Beltrán-López, R. G., Baldwin, C. C., Barraxza, E., Espinoza, E., Martínez, J. E. & Domínguez-Domínguez, O. (2019). Diversification of the genus Apogon (Lacepède, 1801) (Apogonidae: Perciformes) in the tropical eastern Pacific. Molecular Phylogenetics and Evolution 132, 232-242.
      Pirie, M. D. & Doyle, J. A. (2012). Dating clades with fossils and molecules: the case of Annonaceae. Botanical Journal of the Linnean Society 169, 84-116.
      *Porter, D. M. (1969). The genus Kallstroemia (Zygophyllaceae). Contributions from the Gray Herbarium of Harvard University 198, 41-153.
      Prothero, D. R. (2007). Evolution: What the Fossils Say and Why It Matters. Columbia University Press, New York.
      Pyron, R. A., Burbrink, F. T. & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13, 93.
      *Rassmann, K. (1997). Evolutionary age of the Galápagos iguanas predates the age of the present Galápagos Islands. Molecular Phylogenetics and Evolution 7, 158-172.
      *Razowski, J., Landry, B. & Roque-Albelo, L. (2008). The Tortricidae (Lepidoptera) of the Galápagos Islands, Ecuador. Revue Suisse de Zoologie 115, 185-220.
      Ree, R. H. & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4-14.
      Rehn, J. A. (1939). The South American species of the Oedipodine genus Trimerotropis (Orthoptera: Acrididae). Transactions of the American Entomological Society 65, 395-414.
      Robertson, D. R. & Cramer, K. L. (2009). Shore fishes and biogeographic subdivisions of the tropical eastern Pacific. Marine Ecology Progress Series 380, 1-17.
      Román-Palacios, C. & Wiens, J. J. (2018). The tortoise and the finch: testing for island effects on diversification using two iconic Galápagos radiations. Journal of Biogeography 45, 1701-1712.
      *Rónez, C., Brito, J., Hutterer, R., Martin, R. A. & Pardiñas, U. F. (2020). Tribal allocation and biogeographical significance of one of the largest sigmodontine rodent, the extinct Galápagos Megaoryzomys (Cricetidae). Historical Biology. https://doi.org/10.1080/08912963.2020.1752202. Epub ahead of print.
      Ronquist, F. (1997). Dispersal-vicariance analysis: a new biogeographic approach to the quantification of historical biogeography. Systematic Biology 46, 195-203.
      Rosen, D. E. (1976). A vicariance model of Caribbean biogeography. Systematic Zoology 24, 431-464.
      Rosenbaum, G., Giles, D., Saxon, M., Betts, P. G., Weinberg, R. F. & Duboz, C. (2005). Subduction of the Nazca Ridge and the Inca Plateau: insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters 239, 18-32.
      *Rosenblatt, R. H. & Walker, B. W. (1963). The marine shore-fishes of the Galápagos Islands. Occasional Papers of the California Academy of Sciences 44, 97-106.
      *Rumeu, B., Vargas, P. & Riina, R. (2016). Incipient radiation versus multiple origins of the Galápagos Croton scouleri (Euphorbiaceae). Journal of Biogeography 43, 1717-1727.
      Sager, W. W., Sano, T. & Geldmacher, J. (2016). Formation and evolution of Shatsky Rise oceanic plateau: insights from IODP Expedition 324 and recent geophysical cruises. Earth-Science Reviews 159, 306-336.
      *Sánchez-Del Pino, I., Motley, T. J. & Borsch, T. (2012). Molecular phylogenetics of Alternanthera (Gomphrenoideae, Amaranthaceae): resolving a complex taxonomic history caused by different interpretations of morphological characters in a lineage with C4 and C3-C4 intermediate species. Botanical Journal of the Linnean Society 169, 493-517.
      *Schatz, H. (1998). Oribatid mites of the Galápagos Islands - faunistics, ecology and speciation. Experimental and Applied Acarology 22, 373-409.
      Schilling, E. E. & Panero, J. L. (2011). A revised classification of subtribe Helianthinae (Asteraceae: Heliantheae) II. Derived lineages. Botanical Journal of the Linnean Society 167, 311-331.
      *Schmalfuss, H. (2004). World Catalog of Terrestrial Isopods. Oniscidea, Isopoda. Electronic file available at http://www.oniscidea-catalog.naturkundemuseum-bw.de/Cat_terr_isop.pdf.
      *Schmitz, P., Cibois, A. & Landry, B. (2007). Molecular phylogeny and dating of an insular endemic moth radiation inferred from mitochondrial and nuclear genes: the genus Galagete (Lepidoptera: Autostichidae) of the Galápagos Islands. Molecular Phylogenetics and Evolution 45, 180-192.
      *Schuh, R. T. & Schwartz, M. D. (1985). Revision of the plant bug genus Rhinacloa Reuter with a phylogenetic analysis (Hemiptera: Miridae). Bulletin of the American Museum of Natural History 179, 379-470.
      *Sebastian, P., Schaefer, H., Lira, R., Telford, I. R. H. & Renner, S. S. (2012). Radiation following long-distance dispersal: the contributions of time, opportunity and diaspore morphology in Sicyos (Cucurbitaceae). Journal of Biogeography 39, 1427-1438.
      *Sequeira, A. S., Lanteri, A. A., Albelo, R., Bhattacharya, S. & Sijapati, M. (2008). Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils. Molecular Ecology 17, 1089-1107.
      *Sinclair, B. J. (2009). Dipteran biodiversity of the Galápagos. In Diptera Diversity: Status, Challenges and Tools (eds T. Pape, D. Bickel and R. Meier), pp. 98-120. Brill, Leiden.
      Sinclair, B. J. & Cumming, J. M. (2013). Hybotidae of the Galápagos Islands (Diptera: Empidoidea: Tachydromiinae). Tijdschrift voor Entomologie 156, 127-139.
      Sleumer, H. (1935). Revision der Gattung Pernettya Gaud. Notizblatt des Königlichen Botanischen Gartens und Museums zu Berlin 12, 626-655.
      *Spear, L. B. & Ainley, D. G. (2005). At-sea distributions and abundance of tropicbirds in the eastern Pacific. Ibis 147, 353-366.
      *Stuessy, T. F., Blöch, C., Villaseñor, J. L., Rebernig, C. A. & Weiss-Schneeweiss, H. (2011). Phylogenetic analyses of DNA sequences with chromosomal and morphological data confirm and refine sectional and series classification within Melampodium (Asteraceae, Millerieae). Taxon 60, 436-449.
      *Taylor, S. A., Maclagan, L., Anderson, D. J. & Friesen, V. L. (2011). Could specialization to cold-water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. Journal of Biogeography 38, 883-893.
      Tejada, M. L. G., Geldmacher, J., Hauff, F., Heaton, D., Koppers, A. A., Garbe-Schönberg, D., Hoernle, K., Heydolph, K. & Sager, W. W. (2016). Geochemistry and age of Shatsky, Hess, and Ojin rise seamounts: implications for a connection between the Shatsky and Hess rises. Geochimica et Cosmochimica Acta 185, 302-327.
      Teillier, S. & Escobar, F. (2013). Revisión del género Gaultheria L. (Ericaceae) en Chile. Gayana Botanica 70, 136-153.
      Thomas, W. W. (1990). The American genera of Simaroubaceae and their distribution. Acta Botanica Brasilica 4, 11-18.
      Thornton, I. W. B. & Woo, A. K. T. (1973). The Psocoptera of the Galápagos Islands. Pacific Insects 15, 1-58.
      *Torres, C. R., Ogawa, L. M., Gillingham, M. A., Ferrari, B. & Van Tuinen, M. (2014). A multi-locus inference of the evolutionary diversification of extant flamingos (Phoenicopteridae). BMC Evolutionary Biology 14, e36.
      Torres-Carvajal, O., Rodríguez-Guerra, A. & Chaves, J. A. (2016). Present diversity of Galápagos leaf-toed geckos (Phyllodactylidae: Phyllodactylus) stems from three independent colonization events. Molecular Phylogenetics and Evolution 103, 1-5.
      Trela, J., Vidito, C., Gazel, E., Herzberg, C., Class, C., Whalen, W., Jicha, B., Bizimis, M. & Alvarado, G. E. (2015). Recycled crust in the Galápagos plume source at 70 Ma: implications for plume evolution. Earth and Planetary Science Letters 425, 268-277.
      *Trusty, J. L., Tye, A., Collins, T. M., Michelangeli, F. A., Madriz, P. & Francisco-Ortega, J. (2012). Galápagos and Cocos Islands: geographically close, botanically distant. International Journal of Plant Sciences 173, 36-53.
      Tye, A. & Francisco-Ortega, J. (2011). Origins and evolution of Galápagos endemic vascular plants. In The Biology of Island Floras (eds D. Bramwell and J. Caujape-Castells), pp. 89-153. Cambridge University Press, Cambridge.
      Ulloa, M. (2014). The diploid D genome cottons (Gossypium spp.) of the New World. In World Cotton Germplasm Resources (Volume 8, ed. I. Y. Abdurakhmonov), pp. 201-229. Intech, Rijeka.
      Utsunomiya, A., Suzuki, N. & Ota, T. (2008). Preserved paleo-oceanic plateaus in accretionary complexes: implications for the contributions of the Pacific superplume to global environmental change. Gondwana Research 14, 115-125.
      *Vagvolgyi, J. (1974). Nesopupa galapagensis, a new Indo-Pacific element in the land snail fauna of the Galápagos Islands (Pulmonata: Vertiginidae). Nautilus 88, 86-89.
      *Vandel, A. (1972). De l'utilisation des données biogéographiques dans la reconstitution des anciens visages du globe terrestre. Comptes Rendus de l'Académie des Sciences 274, 38-41.
      *Van Syoc, R. (2010). Darwin, barnacles and the Galápagos: a view through a 21st century lens. Proceedings of the California Academy of Science 61(Suppl. II), 157-166.
      Vera, U., Päckert, M., Cibois, A., Fumagalli, L. & Roulin, A. (2018). Comprehensive molecular phylogeny of barn owls and relatives (family: Tytonidae), and their six major Pleistocene radiations. Molecular Phylogenetics and Evolution 125, 127-137.
      *Waller, T. R. (2007). The evolutionary and biogeographic origins of the endemic Pectinidae (Mollusca: Bivalvia) of the Galápagos Islands. Journal of Paleontology 81, 929-950.
      Wang, H., Gurnis, M. & Skogseid, J. (2017). Rapid Cenozoic subsidence in the Gulf of Mexico resulting from Hess Rise conjugate subduction. Geophysics Research Letters 44, 10930-10938.
      Ware, J. L., Beatty, C. D., Sánchez Herrera, M., Valley, S. A., Johnson, J. T., Kerst, C., May, M. L. & Theischinger, G. (2014). The petaltail dragonflies (Odonata: Petaluridae): Mesozoic habitat specialists that survive to the modern day. Journal of Biogeography 41, 1291-1300.
      Warnock, R. C. M., Parham, J. F., Joyce, W. G., Lyson, T. R. & Donoghue, P. C. J. (2015). Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proceedings of the Royal Society B 282, 20141013.
      *Waselkov, K. E., Boleda, A. S. & Olsen, K. M. (2018). A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. Systematic Botany 43, 439-458.
      *Weeks, A., Baird, K. E. & McMullen, C. K. (2010). Origin and evolution of endemic Galápagos Varronia species (Cordiaceae). Molecular Phylogenetics and Evolution 57, 948-954.
      Welch, A. J., Yoshida, A. A. & Fleischer, R. C. (2011). Mitochondrial and nuclear DNA sequences reveal recent divergence in morphologically indistinguishable petrels. Molecular Ecology 20, 1364-1377.
      Wendel, J. F., Brubaker, C. L. & Seelenan, T. (2010). The origin and evolution of Gossypium. In Physiology of Cotton (eds J. M. Stewart, D. M. Oosterhuis, J. J. Heitholt and J. R. Mauney), pp. 1-18. Springer, Dordrecht.
      *Westheide, W. (1991). The meiofauna of the Galápagos: a review. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 37-74. Springer, New York.
      *Wicksten, M. K. (1991). Caridean and stenopodid shrimp of the Galápagos Islands. In Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands (ed. M. J. James), pp. 147-156. Springer, New York.
      Wiggins, I. L. & Porter, D. M. (1971). Flora of Galápagos Islands. Stanford University Press, Stanford.
      *World Spider Catalogue. (2020). Version 21.0. Natural History Museum Bern. Electronic file available at http://wsc.nmbe.ch.
      *Wright, J. W. (1983). The evolution and biogeography of the lizards of the Galápagos archipelago: evolutionary genetics of Phyllodactylus and Tropidurus populations. In Patterns of Evolution in Galápagos Organisms (eds R. I. Bowman, M. Berson and A. E. Levinton), pp. 123-155. American Association for the Advancement of Science, Pacific Division, San Francisco.
      *Wyles, J. S. & Sarich, V. M. (1983). Are the Galápagos iguanas older than the Galápagos? Molecular evolution and colonization models for the archipelago. In Patterns of Evolution in Galápagos Organisms (eds R. I. Bowman, M. Berson and A. E. Levinton), pp. 177-185. American Association for the Advancement of Science, Pacific Division, San Francisco.
      Wynen, L. P., Goldsworthy, S. D., Insley, S. J., Adams, M., Bickham, J. W., Francis, J., Gallo, J. P., Hoelzel, A. R., Majluf, P., White, R. W. & Slade, R. (2001). Phylogenetic relationships within the eared seals (Otariidae: Carnivora): implications for the historical biogeography of the family. Molecular Phylogenetics and Evolution 21, 270-284.
      *Yang, Y., Riina, R., Morawetz, J. J., Haevermans, T., Aubriot, X. & Berry, P. E. (2012). Molecular phylogenetics and classification of Euphorbia subgenus Chamaesyce (Euphorbiaceae). Taxon 61, 764-789.
      Zaher, H., Grazziotin, F. G., Cadle, J. E., Murphy, R. W., Moura-Leite, J. C. & Bonatto, S. L. (2009). Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia [São Paulo] 49, 115-153.
      Zaher, H., Yánez-Muñoz, M. H., Rodrigues, M. T., Graboski, R., Machado, F. A., Altamirano-Benzvides, M., Bonatto, S. L. & Grazziotin, F. G. (2018). Origin and hidden diversity within the poorly known Galápagos snake radiation (Serpentes: Dipsadidae). Systematics and Biodiversity 16, 614-642.
      *Zhang, J. & Maddison, W. P. (2015). Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny. Zootaxa 3938, 1-147.
    • Contributed Indexing:
      Keywords: Caribbean; dispersal; Guerrero terrane; hotspot; metapopulation; tectonics; vicariance
    • Publication Date:
      Date Created: 20210322 Date Completed: 20211025 Latest Revision: 20211025
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/brv.12696
    • Accession Number:
      33749122