Peroxisome proliferator-activated receptor gamma regulates genes involved in milk fat synthesis in mammary epithelial cells of water buffalo.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: Australia NLM ID: 100956805 Publication Model: Print Cited Medium: Internet ISSN: 1740-0929 (Electronic) Linking ISSN: 13443941 NLM ISO Abbreviation: Anim Sci J Subsets: MEDLINE
    • Publication Information:
      Publication: Richmond, Vic. : Wiley
      Original Publication: Tokyo, Japan : Japanese Society of Zootechnical Science [1999-
    • Subject Terms:
    • Abstract:
      Peroxisome proliferator-activated receptor gamma (PPARγ) is a critical transcription factor regulating lipid and glucose metabolism. However, the regulatory effect of PPARγ on milk fat synthesis in buffalo mammary gland is not clear. In order to explore the role of buffalo PPARG gene in milk fat synthesis, lentivirus-mediated interference was used to knock it down and then the recombinant fusion expression vector was transfected into buffalo mammary epithelial cell (BMEC) to overexpress it. PPARG gene knockdown significantly decreased the expression of CD36, FABP3, FABP4, ACSS2, ELOVL6, DGAT2, BTN1A1, AGPAT6, LPIN1, ABCG2, PPARGC1A, INSIG1, FASN, and SREBF2 genes and significantly upregulated the expression of INSIG2 gene but had no significant effect on the expression of ACSL1, GPAM, and SREBF1 genes. PPARG overexpression significantly increased the relative mRNA abundance of CD36, FABP3, FABP4, ACSS2, ELOVL6, DGAT2, BTN1A1, AGPAT6, LPIN1, PPARGC1A, INSIG1, and SREBF2 genes and significantly downregulated the expression of INSIG2 gene but had no significant effect on the expression of ACSL1, GPAM, ABCG2, FASN, and SREBF1 genes. In addition, knockdown/overexpression of PPARG gene significantly decreased/increased triacylglycerol (TAG) content in BMECs. This study revealed that buffalo PPARG gene is a key gene regulating buffalo milk fat synthesis.
      (© 2021 Japanese Society of Animal Science.)
    • References:
      Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation. PPAR Research, 2013, 1-28. https://doi.org/10.1155/2013/684159.
      Bionaz, M., & Loor, J. J. (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics, 9, 366. https://doi.org/10.1186/1471-2164-9-366.
      Bugge, A., Grøntved, L., Aagaard, M. M., Borup, R., & Mandrup, S. (2009). The PPARγ2 A/B-domain plays a gene-specific role in transactivation and cofactor recruitment. Molecular Endocrinology, 23, 794-808. https://doi.org/10.1210/me.2008-0236.
      Chen, Y. Q., Kuo, M.-S., Li, S., Bui, H. H., Peake, D. A., Sanders, P. E., Thibodeaux, S. J., Chu, S., Qian, Y.-W., Zhao, Y., Bredt, D. S., Moller, D. E., Konrad, R. J., Beigneux, A. P., Young, S. G., & Cao, G. (2008). AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. Journal of Biological Chemistry, 283, 10048-10057. https://doi.org/10.1074/jbc.M708151200.
      Chinetti, G., Fruchart, J. C., & Staels, B. (2000). Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation Research, 49, 497-505. https://doi.org/10.1007/s000110050622.
      Choi, C. S., Savage, D. B., Kulkarni, A., Yu, X. X., Liu, Z.-X., Morino, K., Kim, S., Distefano, A., Samuel, V. T., Neschen, S., Zhang, D., Wang, A., Zhang, X.-M., Kahn, M., Cline, G. W., Pandey, S. K., Geisler, J. G., Bhanot, S., Monia, B. P., & Shulman, G. I. (2007). Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. Journal of Biological Chemistry, 282, 22678-22688. https://doi.org/10.1074/jbc.M704213200.
      Dong, X., & Tang, S. (2010). Insulin-induced gene: A new regulator in lipid metabolism. Peptides, 31, 2145-2150. https://doi.org/10.1016/j.peptides.2010.07.020.
      Du, C., Deng, T. X., Zhou, Y., Ghanem, N., & Hua, G. H. (2019). Bioinformatics analysis of candidate genes for milk production traits in water buffalo (Bubalus bubalis). Tropical Animal Health and Production, 52, 63-69. https://doi.org/10.1007/s11250-019-01984-1.
      Eberle, D., Hegarty, B., Bossard, P., Ferre, P., & Foufelle, F. (2004). SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 86, 839-848. https://doi.org/10.1016/j.biochi.2004.09.018.
      Engelking, L. J., Liang, G., Hammer, R. E., Takaishi, K., Kuriyama, H., Evers, B. M., Li, W. P., Horton, J. D., Goldstein, J. L., & Brown, M. S. (2005). Schoenheimer effect explained-feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. Journal of Clinical Investigation, 115, 2489-2498. https://doi.org/10.1172/JCI25614.
      Escher, P., & Wahli, W. (2000). Peroxisome proliferator-activated receptors: Insight into multiple cellular functions. Mutation Research, 448, 121. https://doi.org/10.1016/S0027-5107(99)00231-6.
      Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A., & Loor, J. J. (2009). Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92, 4276-4289. https://doi.org/10.3168/jds.2008-1932.
      Kang, Y. U., Hengbo, S., Jun, L., Jun, L. I., Wangsheng, Z., Huibin, T., & Huaiping, S. (2015). PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. Journal of Cellular Biochemistry, 116, 192-201. https://doi.org/10.1002/jcb.24958.
      Kast-Woelbern, H. R., Dana, S. L., Cesario, R. M., Sun, L., de Grandpre, L. Y., Brooks, M. E., Osburn, D. L., Reifel-Miller, A., Klausing, K., & Leibowitz, M. D. (2004). Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. Journal of Biological Chemistry, 279, 23908-23915. https://doi.org/10.1074/jbc.M403145200.
      Krapivner, S., Popov, S., Chernogubova, E., Hellénius, M.-L., Fisher, R. M., Hamsten, A., & van't Hooft, F. M. (2008). Insulin-induced gene 2 involvement in human adipocyte metabolism and body weight regulation. Journal of Clinical Endocrinology and Metabolism, 93, 1995-2001. https://doi.org/10.1210/jc.2007-1850.
      Lalitha, S. (2000). Primer premier 5. Biotech Software & Internet Report, Journal for Scient, 1, 270-272. https://doi.org/10.1089/152791600459894.
      Li, J., Guo, C., & Wu, J. (2019). 15-Deoxy-∆-12,14-Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR-γ: Function and Mechanism. PPAR Research, 2019, 1-10. https://doi.org/10.1155/2019/7242030.
      Liang, M.-Y., Hou, X.-M., Qu, B. O., Zhang, N. A., Li, N., Cui, Y.-J., Li, Q.-Z., & Gao, X.-J. (2014). Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells. Vitro Cellular & Developmental Biology-Animal, 50, 865-873. https://doi.org/10.1007/s11626-014-9780-z.
      Liu, L., Lin, Y. E., Liu, L., Wang, L., Bian, Y., Gao, X., & Li, Q. (2016). Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells. Vitro Cellular & Developmental Biology-Animal, 52, 1044-1059. https://doi.org/10.1007/s11626-016-0059-4.
      Mach, N., Jacobs, A. A., Kruijt, L., van Baal, J., & Smits, M. A. (2011). Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids. Animal, 5, 1217-1230. https://doi.org/10.1017/S1751731111000103.
      Meng, H., Li, H., Zhao, J. G., & Gu, Z. L. (2005). Differential expression of peroxisome proliferator-activated receptors alpha and gamma gene in various chicken tissues. Domestic Animal Endocrinology, 28, 105-110. https://doi.org/10.1016/j.domaniend.2004.05.003.
      Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., Piqani, B., Eisenhaure, T. M., Luo, B., Grenier, J. K., Carpenter, A. E., Foo, S. Y., Stewart, S. A., Stockwell, B. R., Hacohen, N., Hahn, W. C., Lander, E. S., Sabatini, D. M., & Root, D. E. (2006). A Lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124, 1283-1298. https://doi.org/10.1016/j.cell.2006.01.040.
      Mokhber, M., Moradi-Shahrbabak, M., Sadeghi, M., Moradi-Shahrbabak, H., Stella, A., Nicolzzi, E., Rahmaninia, J., & Williams, J. L. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics, 19, 449. https://doi.org/10.1186/s12864-018-4759-x.
      Ogg, S. L., Weldon, A. K., Dobbie, L., Smith, A. J., & Mather, I. H. (2004). Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proceedings of the National Academy of Sciences of the United States of America, 101, 10084-10089. https://doi.org/10.1073/pnas.0402930101.
      Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., & Mortensen, R. M. (1999). PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Molecular Cell, 4, 611-617. https://doi.org/10.1016/S1097-2765(00)80211-7.
      Rosen, E. D., Walkey, C. J., Puigserver, P., & Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. Genes & Development, 14, 1293.
      Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., & Moorman, A. F. M. (2009). Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37(6), e45. https://doi.org/10.1093/nar/gkp045.
      Schoonjans, K., Watanabe, M., Suzuki, H., Mahfoudi, A., Krey, G., Wahli, W., Grimaldi, P., Staels, B., Yamamoto, T., & Auwerx, J. (1995). Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. Journal of Biological Chemistry, 270, 19269-19276. https://doi.org/10.1074/jbc.270.33.19269.
      Shi, H., Luo, J., Zhu, J., Li, J., Sun, Y., Lin, X., Zhang, L., Yao, D., & Shi, H. (2013). PPARγ regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Research, 2013, 1-10. https://doi.org/10.1155/2013/310948.
      Singh, A. B., Kan, C. F., Dong, B., & Liu, J. (2016). SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter. Journal of Biological Chemistry, 291, 5373-5384. https://doi.org/10.1074/jbc.M115.696872.
      Spitsberg, V. L., Matitashvili, E., & Gorewit, R. C. (1995). Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. European Journal of Biochemistry, 230, 872-878. https://doi.org/10.1111/j.1432-1033.1995.tb20630.x.
      Vergnes, L., Beigneux, A. P., Davis, R., Watkins, S. M., Young, S. G., & Reue, K. (2006). Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. Journal of Lipid Research, 47, 745-754. https://doi.org/10.1194/jlr.M500553-JLR200.
      Vysochan, A., Sengupta, A., Weljie, A. M., Alwine, J. C., & Yu, Y. (2017). ACSS2-mediated acetyl-CoA synthesis from acetate is necessary for human cytomegalovirus infection. Proceedings of the National Academy of Sciences, 114, E1528-E1535. https://doi.org/10.1073/pnas.1614268114.
      Wang, H., Airola, M. V., & Reue, K. (2017). How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1862(10), 1131-1145. https://doi.org/10.1016/j.bbalip.2017.06.010.
      Wang, Z., Luo, J., Wang, W., Zhao, W., & Lin, X. (2010). Characterization and culture of isolated primary dairy goat mammary gland epithelial cells. Chinese Journal of Biotechnology, 26, 1123-1127 (in Chinese).
      Xu, H., Luo, J., Ma, G., Zhang, X., Yao, D., Li, M., & Loor, J. J. (2018). Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. Journal of Cellular Physiology, 233, 1005-1016. https://doi.org/10.1002/jcp.25954.
      Xu, H. F., Luo, J., Zhao, W. S., Yang, Y. C., Tian, H. B., Shi, H. B., & Bionaz, M. (2016). Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. Journal of Dairy Science, 99, 783-795. https://doi.org/10.3168/jds.2015-9736.
      Yadav, P., Mukesh, M., Kataria, R. S., Yadav, A., Mohanty, A. K., & Mishra, B. P. (2012). Semi-quantitative RT-PCR analysis of fat metabolism genes in mammary tissue of lactating and non-lactating water buffalo (Bubalus bubalis). Tropical Animal Health and Production, 44, 693-696. https://doi.org/10.1007/s11250-011-9988-9.
      Zhou, J., Febbraio, M., Wada, T., Zhai, Y., Kuruba, R., He, J., Lee, J. H., Khadem, S., Ren, S., Li, S., Silverstein, R. L., & Xie, W. (2008). Hepatic fatty acid transporter CD36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology, 134, 556-557. https://doi.org/10.1053/j.gastro.2007.11.037.
      Zhu, J. J., Luo, J., Wang, W., Yu, K., Wang, H. B., Shi, H. B., Sun, Y. T., Lin, X. Z., & Li, J. (2014). Inhibition of FASN reduces the synthesis of medium-chain fatty acids in goat mammary gland. Animal, 8, 1469-1478. https://doi.org/10.1017/S1751731114001323.
    • Grant Information:
      2007C0003Z Natural Science Foundation Key Project of Yunnan Province, China; 2014FA032 Natural Science Foundation Key Project of Yunnan Province, China; 31460582 National Natural Science Foundation of China; 31760659 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: PPARG; knockdown; milk fat synthesis; overexpression; water buffalo
    • Accession Number:
      0 (CD36 Antigens)
      0 (Fatty Acid Binding Protein 3)
      0 (Glycolipids)
      0 (Glycoproteins)
      0 (Intracellular Signaling Peptides and Proteins)
      0 (PPAR gamma)
      0 (Triglycerides)
      0 (milk fat globule)
    • Publication Date:
      Date Created: 20210308 Date Completed: 20210910 Latest Revision: 20230328
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/asj.13537
    • Accession Number:
      33682250