Attenuated Total Reflection Fourier Transform Infrared Spectroscopy combined with chemometric modelling for the classification of clinically relevant Enterococci.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 9706280 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2672 (Electronic) Linking ISSN: 13645072 NLM ISO Abbreviation: J Appl Microbiol Subsets: MEDLINE
    • Publication Information:
      Publication: 2022- : Oxford : Oxford University Press
      Original Publication: Oxford : Published for the Society for Applied Bacteriology by Blackwell Science, c1997-
    • Subject Terms:
    • Abstract:
      Aims: Attenuated Total Reflection Fourier Transform Infrared (ATR-FT-IR) Spectroscopy and chemometric modelling, including soft independent modelling by class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM), were applied to attempt to discriminate 60 clinical isolates of Enterococcus faecium and Enterococcus faecalis and hence evaluate the performance of the spectroscopic approach in identifying enterococci infections.
      Methods and Results: The bacterial samples were identified by polymerize chain reaction (PCR) amplification and their ATR-FT-IR spectra acquired. Spectra were processed to the second derivative using the Savitzky-Golay algorithm and normalized using extended multiplicative signal correction employing the UnscramblerX (CAMO, Norway) software package. Multivariate classification models and their performance were evaluated using Cohen's Kappa coefficient. Principal component analysis (PCA) score plots showed separate clusters of spectra related to membership to E. faecium and E. faecalis, with this explained by bands assigned to PO 2 (1230 cm -1 ), P-O-C (1114 cm -1 ), monosubstituted alkene (997, 987 cm -1 ) and C-O (1070, 1055, 1036 cm -1 ) corresponding to teichoic acids, polysaccharides and peptidoglycan from the cell wall in PCA and PLS-DA loading plots. The best classification model for E. faecium and E. faecalis is SVM, indicating via highest Kappa score. The classification coefficient between SIMCA, PLS-DA, SVM and PCR as reference method were 0·59, 0·9 and 1, respectively, shown as the Kappa scores.
      Conclusions: The main spectral differences observed between the two clinically relevant enterococci species were associated with changes in the teichoic acid content of cell walls. With regard to the binary classification method, SVM was found to be the best performing classification model, providing the highest correlation with the PCR results.
      Significance and Impact of the Study: The study shows that ATR-FT-IR spectroscopy in combination with chemometric modelling can be applied for the phenotypic identification and discrimination of clinically relevant and similar enterococcal species.
      (© 2020 The Society for Applied Microbiology.)
    • References:
      Archibald, A.R., Hancock, I.C. and Harwood, C.R. (1993) Cell wall structure, synthesis, and turnover. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. eds. Hoch, J.A. and Losick, R.. Washington, DC: ASM Press.
      Arlot, Sylvain and Celisse, Alain (2010) A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40-79. http://dx.doi.org/10.1214/09-ss054.
      Baker, M.J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H.J., Dorling, K.M., Fielden, P.R., Fogarty, S.W. et al. (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9, 1771-1791.
      Barker, M. and Rayens, W. (2003) Partial least squares for discrimination. J Chemom 17, 166-173.
      Bhavsar, A.P. and Brown, E.D. (2006) Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 60, 1077-1090.
      Bryce, E., Zemcov, J. and Clarke, M. (1991) Species identification and antibiotic resistance patterns of the enterococci. J Clin Microbiol Infect Dis 10, 745-747.
      Bychowska, A., Theilacker, C., Czerwicka, M., Marszewska, K., Huebner, J., Holst, O., Stepnowski, P. and Kaczyński, Z. (2011) Chemical structure of wall teichoic acid isolated from Enterococcus faecium strain U0317. Carbohydr Res 346, 2816-2819.
      Cetinkaya, Y., Falk, P. and Mayhall, C.G. (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13, 686-707.
      Chakrabarti, S., Svojanovsky, S.R., Slavik, R., Georg, G.I., Wilson, G.S. and Smith, P.G. (2009) Artificial neural network-based analysis of high-throughput screening data for improved prediction of active compounds. J Biomol Screen 14, 1236-1244.
      Charoensri, N., Lerttam, W., Promraksa, B., Wonglakorn, L., Kenprom, S., Pinlaor, P. and Wilailuckana, C. (2014) Species and drug resistance of clinical Enterococci isolates from Srinagarind Hospital, Khon Kaen University. J Med Tech Phy Ther 26, 117-128.
      Cortes, C. and Vapnik, V.N. (1995) Support-vector networks. Mach Learn 20, 273-297.
      Deasy, B.M., Rea, M.C., Fitzgerald, G.F., Cogan, T.M. and Beresford, T.P. (2000) A rapid PCR based method to distinguish between Lactococcus and Enterococcus. Syst Appl Microbiol 23, 510-522.
      Dubois, D., Grare, M., Prere, M.F., Segonds, C., Marty, N. and Oswald, E. (2012) Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. JClin Microbiol 50(8), 2568-2576.
      Fisher, K. and Phillips, C. (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155, 1749-1757.
      Grunert Tom, Jovanovic Dijana, Sirisarn Wanchat, Johler Sophia, Weidenmaier Christopher, Ehling-Schulz Monika, Xia Guoqing (2018) Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode. Scientific Reports, 8 (1), http://dx.doi.org/10.1038/s41598-018-20222-6.
      Helm, D., Labischinski, H., Schallehn, G. and Naumann, D. (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137, 69-79.
      Heraud, P., Wood, B.R., Beardall, J. and McNaughton, D. (2006) Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom 20, 193-197.
      Jackson, C.R., Fedorka-Cray, P.J. and Barrett, J.B. (2004) Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42, 3558-3565.
      Jarvis, R.M., Brooker, A. and Goodacre, R. (2006) Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss 132, 281-292.
      Mahadevan, S., Shah, S.L., Marrie, T.J. and Slupsky, C.M. (2008) Analysis of metabolomic data sing support vector machines. Anal Chem 80, 7562-7570.
      Muhamadali, H., Subaihi, A., Mohammadtaheri, M., Xu, Y., Ellis, D.I., Ramanathan, R., Bansal, V. and Goodacre, R. (2016) Rapid, accurate, and comparative differentiation of clinically and Industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 141, 5127-5136.
      Naumann, D., Helm, D. and Labischinski, H. (1991a) Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81-82.
      Naumann, D., Labischinski, H., andGiesbrecht, P. (1991b) in Modern Techniques for Rapid Microbiological Analysis. ed.Nelson, W.H, pp. 43-96. New York: VCH Publishers. in the press https://doi.org/10.1099/00222615-38-1-75a.
      Patel, T.S., Kaakeh, R., Nagel, J.L., Newton, D.W. and Stevenson, J.G. (2016) Cost analysis of implementing matrix-assisted laser desorption ionization-time of flight mass spectrometry plus real-time antimicrobial stewardship intervention for bloodstream infections. J Clin Microbiol 55, 60-67.
      Pinholt, M., Ostergaard, C., Arpi, M., Bruun, N.E., Schønheyder, H.C., Gradel, K.O., Søgaard, M. and Knudsen, J.D. (2014) Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect 20, 145-151.
      Sader, H.S., Biedenbach, D. and Jones, R.N. (1995) Evaluation of Vitek and API 20S for species identification of enterococci. Diagn Microbiol Infect Dis 22, 315-319.
      Nermut M. V. (2007) M. R. J. Salton, The bacterial Cell Wall. 293 S., 77 Abb., 67 Tab. Amsterdam, London, New York 1964: Elsevier Publishing Company. DM 44,50. Zeitschrift für allgemeine Mikrobiologie, 5 (3), 252-252. http://dx.doi.org/10.1002/jobm.19650050310.
      Wongthong, S., Tippayawat, P., Wongwattanakul, M., Poung-Ngern, P., Wonglakorn, L., Chanawong, A., Heraud, P. and Lulitanond, A. (2020) Attenuated total reflection: Fourier transform infrared spectroscopy for detection of heterogeneous vancomycin-intermediate Staphylococcus aureus. World J Microbiol Biotechnol 36, 22.
      Taha, M., Eideh, H., Saed, S. and Jaber, H. (2014) Fourier transform infrared spectroscopy typing an Enterococcus sp. J Mod Phys 5, 1698-1707.
      Theilacker, C., Holst, O., Lindner, B., Huebner, J. and Kaczyński, Z. (2012) The structure of the wall teichoic acid isolated from Enterococcus faecalis strain 12030. Carbohydr Res 354, 106-109.
      Tsutsumi, T., Frenette, C., Doherty, N., Sedman, J. and Ismail, A. (2019) Transflection Fourier transform infrared spectroscopy as a real-time strain typing technique: a vancomycin-resistant Enterococcus faecium (VRE) typing prospective study. Open Forum Infect Dis 6, 138.
      Wold, S., Sjostrom, M. and Eriksson, L. (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab 58, 109-130.
      Xu, Y., Zomer, S. and Brereton, R.G. (2006) Support vector machines: a recent method for classification in chemometrics. Crit Rev Anal Chem 36, 177-188.
    • Grant Information:
      Centre for Research and Development of Medical Diagnostic Laboratories (CDML)
    • Contributed Indexing:
      Keywords: Enterococcus; Attenuated Total Reflection Fourier Transform Infrared (ATR-FT-IR) Spectroscopy; bacterial identification; multivariate analysis
    • Publication Date:
      Date Created: 20200812 Date Completed: 20210506 Latest Revision: 20210506
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/jam.14820
    • Accession Number:
      32780423