Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Detection of Attention Deficit Hyperactivity Disorder based on EEG feature maps and deep learning.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is a neurological condition, typically manifesting in childhood. Behavioral studies are used to treat the illness, but there is no conclusive way to diagnose it. To comprehend changes in the brain, electroencephalography (EEG) signals of ADHD patients are frequently examined. In the proposed study, we introduce EEG feature map (EEG-FM)-based image construction to input deep learning architectures for classifying ADHD. To demonstrate the effectiveness of the proposed method, EEG data of 15 ADHD patients and 18 control subjects are analyzed and detection performance is presented. EEG-FM-based images are obtained using both traditional time domain features used in EEG analysis, such as Hjorth parameters (activity, mobility, complexity), skewness, kurtosis, and peak-to-peak, and nonlinear features such as the largest Lyapunov Exponent, correlation dimension, Hurst exponent, Katz fractal dimension, Higuchi fractal dimension, and approximation entropy. EEG-FM-based images are used to train DarkNet19 architecture and deep features are extracted for each image dataset. Fewer deep features are chosen for each image dataset using the Minimum Redundancy Maximum Relevance (mRMR) feature selection method, and the concatenated deep feature set is created by merging the selected features. Finally, various machine learning methods are used to classify the concatenated deep features. Our EEG-FM and DarkNet19-based approach yields classification accuracies for ADHD between 96.6% and 99.9%. Experimental results indicate that the use of EEG-FM-based images as input to DarkNet19 architecture gives significant advantages in the detection of ADHD. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Biocybernetics & Biomedical Engineering is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.