A self-supervised learning framework based on physics-informed and convolutional neural networks to identify local anisotropic permeability tensor from textiles 2D images for filling pattern prediction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      In liquid composite molding processes, variabilities in material and process conditions can lead to distorted flow patterns during filling. These distortions appear not only within the same part but also from one part to another. Notably, minor deviations in the dry fibrous textiles cause local permeability changes, resulting in flow distortions and potential defects. Traditional permeability models fall short in predicting these localized fluctuations, especially for anisotropic textiles, whereas reliance on homogeneous permeability models creates substantial discrepancies between forecasted and observed filling patterns. This study presents a self-supervised framework that determines in-plane permeability tensor field of textiles from an image of that textile in dry state. Data from central injection experiments is used for training, including flow images and pressure inlet data. This work demonstrates that this model proficiently predicts flow patterns in unobserved experiments and captures local flow distortions, even when trained on a relatively small dataset of experiments. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Composites: Part A, Applied Science & Manufacturing is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)