Eksplorasi dan Klasifikasi K-NN Terhadap Kejadian Luar Biasa Diare di Jawa Barat. (Indonesian)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Alternate Title:
      Exploration and Classification KNN for Diarrheal Epidemic Events in West Java. (English)
    • Abstract:
      The objective of this research is to scrutinize the impact of water quality and sanitation on Acute Diarrheal Disease Outbreaks (ADDO) in West Java Province, Indonesia, utilizing data from the Village Potential Census (PODES) of the year 2021. Diarrhea is a serious public health issue in Indonesia, especially among young children, and poor water quality and sanitation are major contributing factors. In the context of this research, the K-Nearest Neighbors (K-NN) algorithm is employed to classify regions with ADDO. The data exploration reveals significant variations in the number of diarrhea cases across different regencies and municipalities in West Java. To address the data imbalance issue, we apply three techniques, namely Random Under Sampling, Random Over Sampling, and Synthetic Minority Oversampling Technique (SMOTE). The findings indicate that the K-NN model with SMOTE achieves the greatest level of accuracy at 71.28%. However, F1 scores for all models tend to be low, indicating the challenge of classifying regions with ADDO. This study provides critical key observations regarding the correlation between water quality, sanitation, and ADDO in West Java, identifying areas that require more attention for diarrhea prevention and control programs. These findings serve as a foundation for designing more effective health programs in regions with high diarrhea incidence rates. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Tujuan dari penelitian ini adalah untuk mengkaji bagaimana kualitas air dan sanitasi mempengaruhi Kejadian Luar Biasa (KLB) Diare di Provinsi Jawa Barat, Indonesia, menggunakan data Pendataan Potensi Desa (PODES) tahun 2021. Diare merupakan permasalahan serius dalam kesehatan masyarakat Indonesia, terutama pada kelompok anak balita, dan salah satu faktor penyebab utamanya adalah rendahnya kualitas air dan sanitasi. Dalam konteks penelitian ini, kami menerapkan metode algoritma K-Nearest Neighbors (K-NN) untuk mengklasifikasikan wilayah-wilayah yang mengalami KLB Diare. Hasil eksplorasi data menunjukkan variasi yang signifikan dalam jumlah kasus diare di sejumlah kabupaten dan kota yang tersebar di wilayah Jawa Barat. Untuk menangani masalah ketidakseimbangan data, kami menerapkan teknik Pengurangan Acak (Random Under Sampling), Penambahan Acak (Random Over Sampling), dan Synthetic Minority Oversampling Technique (SMOTE). Hasil analisis menunjukkan bahwa model K-NN dengan penggunaan metode SMOTE menghasilkan tingkat akurasi tertinggi, yaitu sebesar 71.28%. Meskipun demikian, nilai F1 score untuk semua model cenderung rendah, yang mengindikasikan adanya tantangan dalam mengklasifikasikan wilayah-wilayah dengan KLB Diare. Penelitian ini memberikan wawasan yang penting mengenai korelasi antara kualitas air, sanitasi, dan KLB Diare di Jawa Barat, serta mengidentifikasi wilayah-wilayah yang memerlukan perhatian lebih dalam upaya pencegahan dan pengendalian penyakit diare. Hasil ini dapat digunakan sebagai dasar untuk merancang program-program kesehatan yang lebih efektif di daerah-daerah dengan tingkat insiden diare yang tinggi. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Techno.com is the property of Universitas Dian Nuswantoro, Fakultas Ilmu Komputer and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)