Towards a classification of sustainable software development process using manifold machine learning techniques.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      With the evaluation of the software industry, a huge number of software applications are designing, developing, and uploading to multiple online repositories. To find out the same type of category and resource utilization of applications, researchers must adopt manual working. To reduce their efforts, a solution has been proposed that works in two phases. In first phase, a semantic analysis-based keywords and variables identification process has been proposed. Based on the semantics, designed a dataset having two classes: one represents application type and the other corresponds to application keywords. Afterward, in second phase, input preprocessed dataset to manifold machine learning techniques (Decision Table, Random Forest, OneR, Randomizable Filtered Classifier, Logistic model tree) and compute their performance based on TP Rate, FP Rate, Precision, Recall, F1-Score, MCC, ROC Area, PRC Area, and Accuracy (%). For evaluation purposes, We have used an R language library called latent semantic analysis for creating semantics, and the Weka tool is used for measuring the performance of algorithms. Results show that the random forest depicts the highest accuracy which is 99.3% due to its parametric function evaluation and less misclassification error. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Intelligent & Fuzzy Systems is the property of IOS Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)